МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА

Труды, вып. 16

1965 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

А. Д. ГЕНКИН, М. Г. ДОБРОВОЛЬСКАЯ

О НАХОДКЕ ПИРСЕИТА В СВИНЦОВО-ЦИНКОВОМ МЕСТОРОЖДЕНИИ СОКОЛЬНОЕ (РУДНЫЙ АЛТАЙ)

Пирсеит — (Ag, Cu)₁₆As₂S₁₁ является весьма редким минералом, обнаруженным в нескольких месторождениях серебряных руд («Минералы», 1960). В месторождениях Советского Союза до настоящего времени он не был встречен. Согласно литературным данным (Рамдор, 1962), по своим оптическим свойствам под микроскопом он не отличим от другой сульфосоли серебра — полибазита (Ag, Cu)₁₆Sb₂S₁₁. П. Рамдор (1962) указывает, что пирсеит и полибазит, должно быть, образуют неограниченный ряд твердых растворов. Однако М. Пикок и Л. Берри (Peacock, Berry, 1947) с помощью рентгеновского изучения кристаллов полибазита и пирсеита показали, что эти минералы не являются изоструктурными, поскольку размеры элементарной ячейки полибазита оказываются постоянно удвоенными по сравнению с размерами ячейки пирсеита. В результате исследований, проведенных в последнее время К. Фронделем (Frondel, 1963), было выявлено существование двух серий твердых растворов: пирсеит — стибиопирсеитовой и полибазит-арсенполибазитовой с размерами элементарной ячейки: $a \sim 13$ Å, $b \sim 7.4$, $c \sim 12$, $\beta = 90^{\circ}$ для членов первой серии и $a \sim 26$ Å, $b \sim 15$, $c \sim 24$, $\beta = 90^{\circ}$ для второй.

УСЛОВИЯ НАХОЖДЕНИЯ И СВОЙСТВА ПИРСЕИТА

Пирсент был обнаружен А. Д. Генкиным в 1939 г. в Иннокентье вской линзе Сокольного месторождения на Рудном Алтае. Месторождение Сокольное (Вейц и др., 1957) залегает в эффузивных породах под экранирующей поверхностью глинистых и известково-глинистых сланцев с прослоями известняков. Нижние горизонты сланцев, обогащенные рудной вкрапленностью, сменяются гидротермально измененными породами, представленными в основном микрокварцитами. Помимо окварцевания в породах широко развита серицитизация, карбонатизация, баритизация и в меньшей степени хлоритизация. Рудные залежи, сложенные сфалеритом, галенитом и пиритом, приурочены как к микрокварцитам, так и к интенсивно серицитизированным породам, так называемым «серицитолитам».

В лежачем боку Иннокентьевской линзы в серицитовой породе были встречены рудные прожилки мощностью от 0,1 до 4,0 см. Благодаря мягкости заключавшей их породы, они легко отделялись от нее. Главным

Рис. 1. Агрегат зерен пирсента (белое) среди акантита (светло-серое). В пирсенте видны характерные трещины. Мельчайшие ярко-белые точечные выделения — самородное серебро. Полированный шлиф. × 90.

рудным минералом прожилков, составляющим около 80% их объема, является акантит. Постоянно присутствует в них пирит, образующий хорошо ограненные кристаллы. Макроскопически наблюдаются также халькопирит, сфалерит, галенит и самородное серебро, выделяющиеся по зальбандам прожилков. В одном из прожилков был обнаружен кристалл электрума. Нерудные минералы — кварц, серицит и хлорит встречаются в незначительных количествах.

При микроскопическом наблюдении, помимо перечисленных выше минералов, был найден пирсеит, образующий агрегаты и отдельные зерна среди акантита (рис. 1). В полированных шлифах в отраженном свете пирсеит серовато-белого цвета со слабым сиреневато-фиолетовым оттенком. Отражательная способность его заметно выше, чем у сфалерита, и немного выше, чем у окружающего его акантита. Величина отражательной способности пирсеита была измерена на спектрофотоэлектрической установке А. Д. Ракчеева (геологический факультет МГУ) с использованием в качестве эталона пирита (Ракчеев, 1964). Для определения отражательной способности пирсепта было выбрано зерно удлиненной формы с прямым погасанием. В связи с тем, что минерал обладает двуотражением, замеры производились в двух положениях зерна, в результате чего были получены величины максимальной (Rg') и минимальной (Rp') отражательной способности. Результаты замеров и сравнение их с литературными данными приведены в табл. 1, а кривые дисперсии отражательной способности на рис. 2.

Кроме указанных нами данных И. Грея и А. Милмана (Gray, Millman, 1962), в литературе приводятся и другие значения отражательной способности для пирсеита, полученные фотоэлектрическим способом для белого плоскополяризованного света в воздухе (вычисленные по пиритовому эталону, для которого R принималось равным 54,5%). Так, например, Мозес (Moses, 1936) указывает для пирсеита R = 31,6%, Р. Фолинсби (Folinsbee, 1949)— 30.2%. С. Бови и К. Тейлор (1959) — 30,1%. Эти значения

Таблица 1

	Отражательная способность, %					
Длина волны λ, ммж	Пирсеит и ния С	з месторожде- окольное	Данные И. Грея и А. Мил- мана* (Gray, Millman, 1961			
	Rg'	Rp'	R1	R2		
700	-	-	29,4	29,5		
670	36,0	23,0				
640	38,0	26,5		1		
608	35,0	26,0				
600	<u> </u>		30,7	31,3		
579	35,0	27,0				
575			35,4	35,4		
550	34,0	28,0				
527	33,3	28,3				
520			35,4	36,7		
496	34,5	29,0				
489	33,6	29,0				
472	32,0	28,5				
470			35,1	36,0		
460	34,0	28,0				
450	35,0	30,0				

Данные по дисперсии отражательной способности пирсента

* R₁ и R₂ — значения отражательной способности для двух неориентированных зерен.

отражательной способности пирсеита для белого света несколько отличаются от величин, приведенных в табл. 1. Такие расхождения, по-видимому, обусловлены различной ориентировкой измеряемых зерен и неодинаковыми условиями, при которых проводились замеры.

Рис. 2. Кривые дисперсии отражательной способности пирсеита. Сплошные линии — кривые пирсеита из Сокольного месторождения, пунктиром показана кривая дисперсии пирсеита по данным И. Грея и А. Милмана

В последние годы в ряде работ Е. Камерона (Cameron, 1961, 1961) было обращено внимание на наличие такого важного свойства у анизотропных минералов, как угол вращения — Аг. Значения угла вращения являются дополнительным диагностическим признаком. Для изученного нами пирсеита А. Д. Ракчеевым была измерена дисперсия видимого угла вращения (Ar). Как это видно на рис. З, максимальный видимый угол вращения 2,2° получен для длины волны 527 ммк. В крайних областях спектра он уменьшается до 0,5—1°. Сопоставление данных дисперсии видимого угла вращения пирсеита из Сокольного месторождения с данными для пирсеита, приведенными в работе Е. Камерона (Cameron, 1961) (рис. 3), показывает их близость, хотя по данным Е. Камерона отмечается небольшое смещение максимума в сторону длин волн 546—589 ммк.

Интересно отметить, что при сравнении кривых дисперсии отражательной способности и видимого угла вращения (рпс. 2 и 3) выявляется, что в одних и тех же областях спектра (527—550 ммк) минимальной отражательной способности пирсеита — 33,3—34% соответствует максимальный видимый угол вращения 2,2°. И наоборот, значения угла вращения уменьшаются в областях максимальной отражательной способности минерала.

Рис. 3. Кривые дисперсии угла вращения пирсеита. Сплошная линия—кривая для пирсеита из Сокольного месторождения; пунктирная линия— кривая для пирсеита по данным Е. Камерона (Cameron, 1961₁)

Как было отмечено выше, пирсеит обладает слабым двуотражением, которое при наблюдении в воздухе почти незаметно. В иммерсии двуотражение более четкое, наблюдается изменение окраски минерала от серовато-белой с желтоватым оттенком до розовато-сиреневой. Изменение оттенка минерала, по-видимому, соответствует двум слабым максимумам на кривой дисперсии отражательной способности пирсента (рис. 2). Пирсеит сильно анизотропен, цветные эффекты анизотропии при неполностью скрещенных николях меняются от желтовато-зеленоватых до фиолетовых и при полностью скрещенных николях — от серо-зеленых до коричневых. Внутренние рефлексы не наблюдались ни в воздухе, ни в иммерсии.

Под действием HNO₃ (1 : 1), HCl (1 : 1), FeCl₃, KOH пирсеит не травится, от KCN возникает заметное почернение.

Пирсент принадлежит к группе мягких и хрупких минералов. В связи с этим в нем постоянно наблюдаются многочисленные трещинки (рис. 1), отсутствующие в окружающем его ковком акантите. Относительный рельеф пирсента несколько выше, чем у акантита, и заметно ниже по сравнению со сфалеритом и халькопиритом. На микротвердометре ПМТ-3 в ИГЕМ АН СССР (прибор тарирован Н. Н. Мозговой по каменной соли) была измерена микротвердость пирсеита. Из десяти вдавливаний, произведенных методом Викерса и давших прекрасные отпечатки алмазной пирамиды, было получено среднее значение $H = 127 \ \kappa \Gamma / Mm^2$ при нагрузке в 20 г. Полученные данные довольно хорошо согласуются с величинами микротвердости пирсеита, указанными в литературе (Бови, Тейлор, 1959; Robertson, 1961).

Исследование состава описываемого минерала производилось с помощью микроспектрального и полуколичественного спектрального анализов¹. Качественный микроспектральный анализ показал присутствие в минерале серебра, меди, мышьяка, сурьмы и серы. Для количественного определения отношения Ag: Си небольшое зерно пирсеита, извлеченное из полированного шлифа, наносилось на алюминиевую пластинку,

¹ Микроспектральный анализ выполнен И. В. Муравьевой в минераграфической лаборатории ИГЕМ АН СССР, полуколичественный спектральный анализ выполнен А. С. Дудыкиной в спектральной лаборатории ИГЕМ АН СССР.

а на другие алюминиевые пластинки наносились капли эталонных растворов с известным отношением Ag: Cu. Затем зерно минерала и осадки выпаренных капель эталонных растворов сжигались на микроспектральной установке. Фотометрирование спектров позволило установить, что отношение Ag: Cu в минерале составляет 3:1. Такое низкое отношение Ag: Cu или такое большое содержание меди, как показывают литературные данные («Минералы», 1960; Frondel, 1963), характерны для пирсеитов с неболышим содержанием сурьмы. Проведенное аналогичным образом, но на медных пластинках, определение отношения As: Sb показало значительное преобладание мышьяка над сурьмой.

Полуколичественным спектральным анализом в минерале установлены: Ag > 10%, Cu > 10%, As ~ 5%, Sb ~ 2%, а в качестве примесей: Ti -0,n%; Si -0,n%; Fe -0,n%; Mg $\sim 0,1\%$; Al -0,0n%; Ca -0,00n%.

Приведенные данные позволяют относить описываемый минерал к пирсеиту с небольшим содержанием сурьмы.

Наиболее точные данные, однозначно подтверждающие отнесение описываемого минерала к пирсеиту, удалось получить при его рентгенометрическом исследовании¹. Результаты последнего, приведенные в табл. 2, показывают почти полное тождество рентгенограммы пирсеита из Сокольного месторождения с рентгенограммами пирсеитов из месторождений Силвер (Монтана) и Аспен (Колорадо). Сопоставление с рентгенограммой полибазита, также приведенной в табл. 2, позволяет установить определенные различия рентгенограмм этих минералов.

К. Фрондель (Frondel, 1963) суммировал в виде таблицы (табл. 3) рентгенометрические данные, характерные для пирсеита и полибазита и дающие возможность легко различать эти минералы. Наиболее важными отличиями являются: 1) одинаковая интенсивность отражения {2244} и {4044} у полибазита и обычно более слабая интенсивность {1122} по сравнению с {2022} у пирсеита; 2) отсутствие у пирсеита интенсивного и четкого отражения {3146} {3254}, характерного для полибазита.

К. Фрондель установил, что сходные с полибазитом рентгенограммы характерны и для тех его разновидностей, в которых по данным химических анализов мышьяк преобладает над сурьмой. С другой стороны, одинаковые рентгенограммы дают пирсеит и его разновидности с преобладанием сурьмы. В связи с этим он приходит к выводу, что пирсеит и полибазит в действительности являются членами двух различных серий твердых растворов. В каждой серии, по-видимому, имеет место полное взаимное замещение мышьяка и сурьмы. По его мнению, название полибазит в его первоначальном смысле следует сохранить для разновидностей с Sb > As (в атомных процентах), а новое название арсенполибазит применять для разновидностей с As > Sb (в атомных процентах). Аналогичным образом к пирсеиту и новой разновидности—стибиопирсеиту следует относить минералы другой серии, размеры элементарной ячейки которых в два раза меньше.

К. Фрондель отмечает, что эти изодиморфные серии сходны с сериями энаргит-стибиоэнаргит и люцонит-фаматинит.

На основании полученных нами данных о составе исследованного минерала и рентгенограммы, весьма близкой к рентгенограмме пирсеита из месторождения Асцен, Колорадо, содержащего лишь 0,18 вес. % сурьмы (Peacock, Berry, 1947), описываемый минерал из Сокольного месторождения следует относить именно к пирсеиту, а не к стибиопирсеиту.

¹ Рентгенограмма пирсеита снята Г. В. Басовой на установке УРС-55 в камере РКД, Д-57,3, излучение FeK_a.

Таблица 2

Результаты рептгенометрического анализа пирсеита из месторождений Сокольное, Силвер (Монтана) и Аспен (Колорадо) и полибазита из месторождения Кили (Онтарио)

Пирсеит						Полибазит			
Сокольное —		C	илвер	A	спен			Кили	
			Berry, Thompson (1962)		h lei I	Berry, Thompson (1962)		hkil	
I	da	I	da	I	da	. nku	I	d _a	
					-		1/2	3,28	4040
5	3,09	5	3,11	1 2	3,11 3,05	11 <u>2</u> 2 2021	9	3,19	$22\bar{4}4$
10	2,98	10	3,00	10	2,97	0004	10	3,00	$\left\{\begin{array}{c} 3250\\0008\end{array}\right.$
10	2,83	9	2,84	9	2,80	2022	8	2,88	$ \left\{\begin{array}{c} 4044\\ 4150 \end{array}\right. $
							1/2	2,77	1128
							5	2,70	$ \left\{\begin{array}{c} 3146\\ 3254\\ 3254 \end{array}\right. $
4	2,48	4	2,50	6	2,47	2023	6	2,53	$\left\{\begin{array}{c} 4046\\ 3360\end{array}\right.$
3	2,37	3	2,37	5	2,34	2131	4	2,42	4262
3	2,30	5	2,33	6	2,30	1122		2,34	2248
ð	2,17	5	2,19	3	2,17	2024	-	4,41	$(21\overline{3}10)$
1	2.12	1/2	2,15	1/2	2,11	3030	1/2	2,15	4370
					·				6062
			0.10			0004	2	0.44	4372
		2	2,10	1	2,08	3031	4	2,11	3258
								8.05	(5272
1	2,06	2	2,07	2	2,04	2133	1	2,07	4158
			0.01			1125	2	9 00	5166
4	2,00	4	2,01	5	1,994	3032	5	2,02	22410
							1/9	1 005	(5274
							1/2	1,997	6172
	4 000		4 044		4 000	(2025		4 000	40410
1	1,890	1	1,914	1	1,899	1016	1	1,933	3368
		1/2	1,884	2	1,859	${ 21\bar{3}4 \\ 3033 }$			(11212
,	4 000		1 050		1 000	0010	C	1.000	4376
4	1,836	5	1,852	6	1,828	2240	6	1,892	4480
		1/2	1,824	1/2	1,804	2241	1/2	1,859	5276
		/-			,		,		(6282
								1,791	5384
									6176
								4 7/3	4378
								1,710	6284
		1							

Таблица 2 (окончание)

Пирсеит					Полибазнт				
		Cı	пвер	A	спен		н	илн	
Сокольное		Berry, Thomps		mpson (i	962)	hkil	Berry, Thompson (1962)		hkil
I	da	I	d_{α}	i	d_{α}		I	da	
3	1,683	3	1,698	3	1,678	$\left\{\begin{array}{c} 20\overline{2}6\\ 31\overline{4}2\end{array}\right.$	3	1,707	$\begin{cases} 40\bar{4}12 \\ 44\bar{8}6 \\ 00014 \end{cases}$
		1/2	1,678	1/2	1,656	$22\bar{4}3$			(00740
					1		2	1,658	6178 5492
							1	1,621	8032
		1/2	1,570	1/2	1,561	$22\overline{4}4$	2	1,559	$\left\{\begin{array}{c} 43\overline{7}10\\ 44\overline{8}8\end{array}\right.$
		1/2	1,547	1/2	1,526	$\Big\{ \begin{matrix} 40\bar{4}2\\ 21\bar{3}6 \end{matrix}$	1	1,554	$ \left\{\begin{array}{c} 22414\\ 6288\\ 42612 \right. $
2	1,500	1	1,492	2	1,495	$\left\{ \begin{array}{c} 2027\\ 0008 \end{array} \right.$	4	1,517	<pre>51612 40414</pre>
1	1,458	1	1,463	1	1,467		1	1,488	00016
2	1,408	1	1,410	1	1,397 1,372		$\frac{1/2}{2}$	1,403 1,435	
		1	1,358	1/2 1 1/2	1,349 1,321		1 1	1,363 1,342	
2	1,244	1	1,252	1/2	1,278 1,237		1/9	1 228	
2 1	1,203 1,181			1 1 1 1/2 1/2 1	1,193 1,172 1,160 1,142 1,131 1,084		1/2 1/2 1/2 1/2 1/2 1	1,212 1,182 1,173 1,157 1,130 1,094	
1 1 1	1,065 1,047 1,022			1/2 1/2 1/2	1,069 1,055 1,024		1	1,072	

ВЗАИМООТНОШЕНИЯ ПИРСЕИТА С ДРУГИМИ МИНЕРАЛАМИ

Пирсеит, наряду со сфалеритом и пиритом, относится к наиболее ранним минералам акантитовых прожилков. Чаще всего пирсеит встречается среди акантита, образуя аллотриоморфнозернистые агрегаты или отдельные идноморфные зерна. Размер его зерен от 0,01 до 1,0 мм. Характерной особенностью агрегатов и отдельных зерен пирсеита является повсеместно проявленная их трещиноватость. В некоторых участках прожилков наблюдаются явления катаклаза агрегатов пирсеита.

96

Интервалы меж-	Относительные	Полибазит, арсенполиба- зит	Пирсеит, стибно- пирсеит
плоскостных расстояний (<u>A</u>)	пнтенсивности	hkil	hkil
3,18 - 3,05	50—90	2244	1122
2,99-2,95	100	0008	0004
2,90-2,86	85-40	3252	Отсутствует
2,87-2,78	80	4044	2022
2,77 - 2.73	15	1128	Отсутствует
2,69-2,64	60	$\left\{ \begin{array}{c} 3146 \\ 3254 \end{array} \right.$	Отсутствует
2,56-2,53	15	4154	Отсутствует
2,52-2,47	45	4046	2023
2.42 - 2.34	2030	4262	2131
2.33 - 2.30	40-20	2248	$11\bar{2}4$
2,20-2,16	25	4048	2024

Рентгенометрические данные, характерные для пирсеита и полибазита

Сфалерит и инрит представлены среди акантита хорошо образованными кристаллами, размер которых у сфалерита достигает 5—6 мм, а у пирита 10 мм. Местами кристаллы сфалерита разъедены акантитом. Наблюдаются также нарушенные кристаллы сфалерита, отдельные части которых сдвинуты вдоль параллельных трещин, что хорошо заметно по смещению двойниковых индивидов сфалерита, выявляемых при травлении в парах царской водки. Особенно интенсивному дроблению подвергаются кристаллы пирита, которые иногда превращаются в агрегат мелких остроугольных обломков, цементируемых акантитом (рис. 4).

Четких возрастных взаимоотношений пирсеита со сфалеритом и пиритом установить не удается, но тот факт, что для всех этих минералов характерно явление катаклаза, свидетельствует о их принадлежности к ранней ассоциации.

Халькопирит, акантит и галенит, встречающийся в очень небольших количествах, принадлежат уже к более поздней ассоциации, причем халькопирит выделяется раньше акантита и галенита. В участках раздробленного пирита в акантите наблюдаются иногда хорошо образованные ненарушенные кристаллы халькопирита (рис. 5), что подтверждает его возникновение после катаклаза пирита, сфалерита и пирсеита.

Одним из самых поздних минералов в описываемой ассоциации является акантит, который разъедает пирсеит, сфалерит, пирит и халькопирит, образует в них прожилки. Большой интерес представляет внутреннее строение агрегатов акантита, выявляющееся благодаря его анизотропии. В скрещенных николях в акантите постоянно наблюдается своеобразное двойниковое строение, причем пластинчатые двойниковые индивиды акантита обладают необычной формой. Иногда встречаются и более правильные полисинтетические двойники (рис. 6). Такое строение акантита обусловлено превращением кубического аргентита в моноклинный акантит, происходящим при понижении температуры до 179°С (Рамдор, 1962). Следует отметить, что в детальной сводке по минералогии полиметаллических месторождений Рудного Алтая (Вейц и др., 1957) акантит указывается

7 Новые данные о минералах СССР

Таблипа 3

Рис. 4. Катакластическая структура пирита (белое), обломки которого цементируются акантитом (серое). Полированный шлиф. $\times~50$

Рис. 5. Кристаллическое зерно халькопирита (светло-ссрое) удлиненной формы и обломки пирита (белое) среди акантита (серое). Полированный плиф. × 90

как гипергенный минерал, встречающийся лишь в зоне вторичного сульфидного обогащения.

Факт совместного нахождения акантита с галенитом и халькопиритом и особенности внутреннего строения его агрегатов безусловно указывают на его гипогенное происхождение.

Рис. 6. Полисинтетические двойники превращения (светлые и темные полоски) в акантите. Полированный шлиф. Снято в скрещенных николях. × 165

Рис. 7. Ветвящиеся прожилки самородного серебра (белое) в акантите (серое). Полированный шлиф. \times 90

Самым поздним минералом акантитовых прожилков является самородное серебро, обычно располагающееся по их зальбандам и нарастающее в виде тонкой (0,1—1 мм) корочки на акантит. Широко развиты также нитевидные формы выделения самородного серебра. В полированных

99

шлифах оно замещает акантит, проникая в него в виде прожилков (рис. 7). Тончайшие прожилочки самородного серебра наблюдаются и среди агрегатов зерен пирсеита.

ЗАКЛЮЧЕНИЕ

Акантитовые прожилки Сокольного месторождения, в которых был обнаружен пирсеит, представляют собой гипогенные образования, возникшие в поздний период формирования свинцово-цинковых руд месторождения. Пирсеит, совместно со сфалеритом и пиритом, относится к ранней минеральной ассоциации, отделенной от минералов более поздней ассоциации явлениями внутрирудного дробления.

Имеющиеся литературные данные (Frondel, 1963), а также наши исследования показывают, что диагностика минералов пирсеит-стибиопирсеитовой и полибазит-арсенполибазитовой серий не может быть осуществлена без данных об их составе и без детального рентгенометрического изучения. В связи с этим следует подвергнуть дополнительному исследованию те минералы, которые были ранее отнесены к полибазиту лишь на основании преобладания в них сурьмы над мышьяком. 롌

ЛИТЕРАТУРА

Бови С., Тейлор К. Определитель рудных минералов.— Труды 2-й Междунар. конфер. по мирному использованию атомной энергии. Геология атомного сырья, 1959.

Вейц Б. И. и др. Минералогия полиметаллических месторождений Рудного Алтая, т. I, 1957; т. III, 1959.

Минералы. Справочник, т. І. Изд-во АН СССР, 1960.

Ракчеев А. Д. К методике получения эталонных значений отражательной способности рудных минералов.— Геология рудных месторождений, 1964, № 1.

Сооности рудных минералов. — Геология рудных месторождений, 1964, № 1.
Рамдор П. Рудные минералы и их срастания. ИЛ, 1962.
Веггу L. G., Thompson R. M. X-ray powder data for ore minerals. — Geol. Soc. Amer., 1962.
Самегоп Е. N. Ore microscopy. — J. Wiley & Sons, Inc., 1961..
Самегоп Е. N., Davis J. H., Guilbert J. M., Larson L. T., Mancuso J. J., Sorem R. K. Rotation properties of certain anisotropic ore minerals. — Econ. Geol., 19612, 56, № 3.

Folinsbee R. E. Determination of reflectivity of the ore minerals .- Econ. Geol., 1949, 44, № 5.

Frondel Cl. Isodimorphism of the polybasite and pearceite series.- Amer. Miner.,

1963, 48, N 5-6.
Gray I. M., Millman A. P. Reflection characteristic of ore minerals.— Econ. Geol., 1962, 57, N 3.
Moses J. H. The identification of opaque minerals by their reflecting power as measured photoelectrically. Harvard Univ., 1936.

Peacock M. A., Berry L. G. Studies of mineral sulpho-salts: XIII - Polyba-

site and pearceite. — Mineral. Mag., 1947, 28, N 196. R o b e r t s o n F. Knoop hardness numbers for 127 opaque minerals.— The Geol. Soc. Amer. Bull., 1961, 72, N 4.