АКАДЕМИЯ НАУК СССР

ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ ИМЕНИ А. Е. ФЕРСМАНА

Выпуск 12

Редактор д-р геол.-мин. наук Г. П. Барсанов

МИНЕРАЛОГИЧЕСКИЕ ЗАМЕТКИ

И. В. ГИНЗБУРГ, А. П. ГОРШКОВ

О ГРАФИТЕ КИАНИТОВЫХ СЛАНЦЕВ КЕЙВ (КОЛЬСКИЙ ПОЛУОСТРОВ)

Кпанитовые сланцы Кейв на Кольском п-ове содержат топкодисперсное углеродистое вещество, окрашивающее кпанит и другие светлоокрашенные минералы, например, плагиоклаз, в темно-серый, почти черный цвет.

Осветление кианитовых сланцев, ввиду исчезновения углеродистого вещества на контакте с телами метабазитов — ортоамфиболитов (Соколов, 1958) и с молодыми дайками диабазов (наблюдения И. В. Гинзбург, 1949 г.), свидетельствует о его выгорании при термальном воздействии основной магмы. Экспериментально установлено, что в процессе отжига при 1500— 1700° кианит из черного постепенно становится снежно-белым, вследствие выгорания углеродистого вещества (Тихонова, Глебова, 1957). Химическим путем в кианите определено присутствие углерода (Харитонов, 1940). Принадлежность к углероду черного пигмента выражена также в его отношении к химическим реагентам (Тихонова, Глебов, 1957).

Выделяют легко выгорающую и трудно выгорающую «модификации» углерода (Харитонов, 1940), относя к первой углеродистое вещество, а ко второй — предположительно графит (Соколов, 1958). Имеется указание о том, что углеродистое вещество наиболее высокотемпературных силлиманитовых сланцев Кейв рентгенометрически диагносцируется как графит (Суслова, 1957).

Глубокий региональный метаморфизм, при котором были сформированы кианитовые сланцы Кейв, исключает возможность присутствия углерода в форме битумов; более того, среди подобного рода образований битумы не отмечались, а графит довольно обычен (Коржинский, 1940; Калинин, 1948; Семененко, Половко и др. 1956 и т. д.). Наконец, о нахождении углерода в форме графита говорит то, что при измельчении кианита и других минералов пальцы рук пачкаются так же, как при соприкосновении с порошком естественного графита.

Все эти сведения не дают ясного представления о минералогической природе тонкодисперсного черного вещества кианитовых сланцев (химически представленного углеродом), хотя косвенно позволяют судить о нахождении его в форме графита.

В целях более надежной диагностики тонкодисперсного углеродистого вещества нами использован образец¹ так называемого крупнопараморфического кианитового сланца, содержащего параморфозы кианита по

¹ Из сборов И. В. Гинзбург 1947 г.; оставшаяся часть образца передана в Минералогический музей им. А. Е. Ферсмана АН СССР, хранится в коллекции псевдоморфоз под № 1147.

Рис. 1. Образец параморфического кианитового сланца. Прежний андалузит (белое) и окружающая его порода с углеродистым веществом (черное) представлены кианитом. Нат. нел.

андалузиту и по окружающей андалузит основной массе (рис. 1). Так как углеродистое вещество в чистом виде выделить не удалось, темно-серый кианит этих сланцев подвергли ряду испытаний.

Сначала в нем установили присутствие углерода в количестве 3,34— 3,43 вес.% (определение по методу Кноппа произвела В. П. Симонова в лаборатории ИГН АН СССР). Спектральным анализом на медном электроде в том же образце углерод не обнаружен, из-за малого его содержания в навеске.

Затем обогатили тонкоизмельченную массу, оставшуюся от химического анализа, учитывая разницу в удельных весах кианита (3,61), графита (2,15—2,25) и кварца (2,65), местами дающего вростки в кианите. Частичное разделение этих минералов путем центрифугирования в бромоформе достигнуто Н. В. Яненковой в лаборатории ИГЕМ АН СССР. Оптимальным оказалось время 15 минут, в течение которого легкая фракция приобрела темно-серый цвет, а тяжелая — светло-серый. Полученную таким образом более темную, обогащенную графитом, фракцию подвергли рентгеновскому исследованию. В составе ее, согласно расшифровке И. В. Гинзбург по методу и данным В. И. Михеева (1957), помимо графита и кианита, оказались кварц и глинистые минералы¹, образованные по кианиту при его гипергенезе (см. таблицу на стр. 173). Присутствие графита в смеси видно более наглядно при сопоставлении столбиковых диаграмм смеси и чистого графита с Цейлона² (рис. 2).

В кианитовых сланцах включения графита настолько мелки, что под микроскопом нельзя обоснованно судить об их форме даже при увеличении в 800 раз. Между тем, в некоторых пегматитах и метаморфических породах

¹ Из них диккит был определен ранее по оптическим и физическим свойствам (устное сообщение Н. И. Плетневой).

² Образец основной коллекции Минералогического музея им. А. Е. Ферсмана АН СССР, № 16162.

О графите кианитовых сланцев Кейв (Кольский по-в)

Образец смеси •		Графит 29		Кианит 761		Кварц 256		Динкит 803 Накрит 804		Метагаллуазит 807 Каолинит 805, 806	
I	$\frac{d\alpha}{n}$	I	$\frac{da}{n}$	1	$\frac{da}{n}$	I	$\frac{d\alpha}{n}$	İ	$\frac{d\alpha}{n}$	I	$\frac{d\alpha}{n}$
443900334338285888057966640323727799993947787388	$\begin{array}{c} 11,3\\10,08\\7,60\\4,28\\3,71\\33,4\\3,21\\2,98\\2,85\\2,71\\2,57\\2,46\\2,36\\2,28\\2,24\\2,13\\1,985\\1,928\\1,817\\1,928\\1,817\\1,928\\1,817\\1,928\\1,817\\1,540\\1,515\\1,454\\1,454\\1,454\\1,323\\1,345\\1,323\\1,304\\1,290\\1,275\\1,258\\1,230\\1,201\\1,154\\1,290\\1,275\\1,258\\1,230\\1,201\\1,154\\1,154\\1,044\\1,065\\1,049\\1,044\\1,065\\1,049\\1,044\\1,065\\1,049\\1,049\\1,044\\1,065\\1,049\\1,049\\1,044\\1,065\\1,009\\0,998\\0,996\\\end{array}$	1 1 80 1 </td <td></td> <td>$\begin{array}{c} - \\ - \\ 2 \\ 4 \\ 3 \\ - \\ 4 \\ 4 \\ 6 \\ 7 \\ - \\ 8 \\ 2 \\ 6 \\ 6 \\ 10 \\ \text{дв.} \\ 4 \\ 4 \\ 2 \\ - \\ 2 \\ 2 \\ 4 \\ - \\ 4 \\ 4 \\ 1 \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$</td> <td>$\begin{array}{c}$</td> <td> 550 22525454 93593428 111 7588728265 7227</td> <td>$\begin{array}{c}$</td> <td>4 4 10 4 10 1 6 4 1 2 {10 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>3,338 3,283 </td> <td>4m. 5 10 10 11 110<td>11,6 9,7 (7,88) </td></td>		$ \begin{array}{c} - \\ - \\ 2 \\ 4 \\ 3 \\ - \\ 4 \\ 4 \\ 6 \\ 7 \\ - \\ 8 \\ 2 \\ 6 \\ 6 \\ 10 \\ \text{дв.} \\ 4 \\ 4 \\ 2 \\ - \\ 2 \\ 2 \\ 4 \\ - \\ 4 \\ 4 \\ 1 \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ 2 \\ - \\ 4 \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c}$	550 22525454 93593428 111 7588728265 7227	$\begin{array}{c}$	4 4 10 4 10 1 6 4 1 2 {10 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	3,338 3,283 	4m. 5 10 10 11 110 <td>11,6 9,7 (7,88) </td>	11,6 9,7 (7,88)

Результаты расшифоовки пороннкограммы смеси минералов, обогащенной графитом

Примечание. Цифры в головке таблицы обозначают номера карточек в справочнике Михеева (1957)

* Снимок снят и рассчитан А. Д. Ласьковой. Условия съемки: Fe-излучение; 2R = 57,3 d = 0.6 мм; экспозиция 5 часов.

** В скобках — линии β.

173

Таблица

включения графитавдругих минералах имеют шаровидную форму (Калинин, 1948). Такую форму и радиально-лучистое строение имеет графит в сплавах (Таран, 1954; Болотов, 1959).

Форму зерен графита кианитовых сланцев А. И. Горшкову удалось выявить с помощью электронного микроскопа методом двухступенчатых целлюлозо-угольных реплик. На рис. 1 участок съемки обведен рамкой.

В отличие от обычного препарирования (Грицаенко, Горшков, Фролова, 1960), в данном случае, при получении иегативного целлюлозового

отпечатка более удобным оказалось класть не образец на пленку, а наоборот. Делалось это следующим образом: на выбранный участок клался размягченный в ацетоне квадратик отмытой в горячей воде рентгеновской пленки размером не более выбранного участка (1—2 см²). Поверх него накладывался сухой квадратик пленки. Все это покрывалось предметным стеклышком, на которое, в свою очередь, был положен грузик (50—100 г), прижимающий пленку к образцу. После высыхания пленки негативный отпечаток отделялся от образца и с него обычным путем получалась угольная, предварительно оттененная платиной, реплика.

На рис. З наблюдаются две минеральные фазы: одна имеет ровную поверхность и относится к кпаниту, другая — шарообразная, которая может принадлежать только графиту. Для проверки делался ряд повторных реплик. Во всех случаях наблюдались шарообразные включения графита.

На рис. 4 видны серые (полупрозрачные) и черные (непрозрачные) шарообразные частицы. Первые представляют реплику с частиц графита, вторые — псевдореплику, т. е. приставшие к реплике частицы графита. Эти приставшие шарообразные частицы убедительно подтверждают представление о форме, размерах и распределении графита в образце, полученные на основании изучения истинных реплик.

Судя по снимкам (рис. 3, 4), размер шариков графита колеблется в пределах 0,4—0,2 µ.

Мельчайшие выделения графита являются признаком многочисленности центров кристаллизации, которая, по-видимому, обусловлена как рассеянностью первичного органогенного углерода, так и незначительностью собирательной перекристаллизации при последующем метаморфизме. На слабую миграцию углерода при метаморфизме указывает первичная

Рис. 3. Включения графита в кианите. Электронномикроскопический снимок; целлюлозо-угольная реплика, оттененная платиной. Ровная блестящая поверхность кианит, шарики — графит

Рис. 4. Включения графита в кианите. Электронномикроскопический сиимок; целлюлозо-угольная реплика, оттенениая илатиной. Черное—шарики графита, приставшие к реплике

слоистость пород, подчеркиваемая расположением скоплений графита. В целом, графит кианитовых сланцев Кейв, является химически инертным минералом, подобно графиту кристаллических сланцев Алдана (Коржинский, 1940); Украины (Семененко, Половко и пр., 1956) и пругих районов.

ЛИТЕРАТУРА

Болотов И. Е. О форме кристаллов графита в сплаве платина - углерод. - Кристаллография, т. 4, вып. 5, 1959. Грицаенко Г. С., Горшков А. И., Фролова К. Е. Применение уголь-

ных и целлюлозо-угольных реплик к изучению поверхностей излома минераль-

ных агрегатов. — Записки Всес. минер. об-ва, ч. 89, вып. 2, 1960. Калинин П. В. О шаровой форме выделений графита. — Труды Моск. геолого-развед. ин-та им. Орджоникидзе, т. 23, 1948.

Коржинский Д. С. Факторы минеральных равновесий и минералогические фации глубинности. — Труды Ин-та геол. наук АН СССР, вып. 12, петрограф. серия, № 5, 1940. Михеев В. И. Рентгенометрический определитель минералов. Госгеолтехиздат,

1957.

Семененко Н. П., Половко Н. И. и др. Петрография железо-кремнистых формаций Украинской ССР. Изд. АН Укр. ССР. Киев, 1956. Семененко Н. П., Жуков Г. В. Петровский графитоносный район Украин-ской ССР. Изд-во АН Укр. ССР. Киев, 1955.

Соколов П. В. Свита Кейв. В кн.: «Геология СССР», т. 27, ч. І. Госгеолтехнадат, 1958.

Суслова С. Н. Полиморфизм кристаллических сланцев Западных Кейв.-- Вестник Ленингр. Гос. ун-та, № 12, серия геол. и петрограф., вып. 2, 1957.

Таран Ю. Ĥ. Структура шаровидного графита.— Докл. АН СССР, т. 96, № 3, 1954.

Тихонова Л. А., Глебов С. В. Кианитовые огнеупоры на основе пород Кейвского месторождения. - Огнеупоры. № 6, 1957.

Харитонов Л. Я. Кианитоносные породы Кейв и их характеристика. В кн.: «Большие Кейвы. Проблема кольских кианитов». Гостонтехиздат, 1940.

176