АКАДЕМИЯ НАУК СССР

МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА Труды, вып. 14 1963 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

М. Д. Дорфман, Т. А. Бурова

ГИПЕРГЕННЫЙ БАРИТ В ХИБИНСКОМ ЩЕЛОЧНОМ МАССИВЕ

Образование анатаза по лампрофиллиту, сфену и мурманиту под влиянием процессов выветривания в Хибинском массиве описано Е. И. Семеновым (1957) п М. Д. Дорфманом (1960). Отмечено, что при изменении сфена образуется анатаз, при изменении мурманита — ниобоанатаз, а при выветривании лампрофиллита — вместе с анатазом и лимонит (Семенов, 1957). Натрий, стронций, кальций и другие элементы выщелачиваются и выносятся.

Интересный случай поверхностного изменения лампрофиллита с образованием анатаза и барита был установлен нами в Хибинском массиве на плато Расвумчорр близ апатитового цирка. В рисчоррите среди свалов-глыб обнаружено небольшое гнездо лампрофиллита (в поперечнике до 15 см), почти полностью замещенное землистой массой лейкоксена. Псевдоморфозы сохраняют не только очертания крупных пластин первичного агрегата, но даже и следы спайности минерала. Мелкие реликты неизмененного лампрофиллита (3—6 мм) видны лишь на участках близ контакта гнезда с вмещающей породой или внутри глыб, где процессы выветривания проявились в слабой степени.

Преобладает землистая масса (твердость 1), окрашенная участками в желтый или желтовато-серый цвет. В ней в направлении вытянутости измененных пластин лампрофиллита наблюдаются очень тонкие прерывистые ярко-желтые полоски толщиной не более 0,1 мм, которые, соединяясь поперечными перегородками, образуют своеобразный каркас. Твердость их — около 3, излом раковистый или неровный. Полоски хрупкие.

Внутри ячеек, заполненных землистым веществом псевдоморфозы, в свою очередь обособляются мелкие стяжения неправильной формы или овалы того же состава (0,1—0,3 мм в диаметре), что и каркас. Кроме того, в псевдоморфозах наблюдается небольшое количество очень мелких, разрозненных, почти нацело окисленных зерен пирротина, до 2 мм в поперечнике. Иногда видны пленки окислов железа, а также тонкие секущие прожилки неизмененного эгирина. Следы выветривания обнаруживает и нефелин. Полевой шпат остается неизменным, что характерно для процессов выветривания нефелиновых сиенитов Хибинского массива (Дорфман, 1960).

В иммерсионных препаратах землистая разновидность лейкоксена, как и «каркасная», на поляризованный свет не реагирует. Лишь в первой наблюдаются слабо поляризующие участки, видимо, за счет механической примеси. Каркасная разновидность просвечивает в тонких сколах зеленовато-желтым цветом. Показатель преломления у землистой разновидности больше 1,78, у каркасной Ng' = 1,643, Np' = 1,633. Отбор материала на спектральный, химический и рентгеновский анализы представлял значительные трудности, так как все отмеченные выше разновидности тесно срастаются друг с другом. Поэтому результаты слектрального анализа (табл. 1) характеризуют не мономинеральный состав каждой из выделенных разновидностей, а преобладающую часть смеси землистую или каркасную.

Состав свежего лампрофиллита по результатам спектрального анализа мало отличается от состава продуктов его изменения. В землистой разновидности несколько увеличивается содержание Та, Nb, Fe, в то время как в «каркасной», по сравнению с землистой, резко возрастает количество Ва.

Таблица 1

Таблица 2

Результаты спектрального анализа лампрофиллита и продуктов его выветривания Неполный химический анализ продуктов выветривания лампрофиллита

Элементы	Ламп- рофил- лит	Землистый анатаз	Ячеистый кар- кас (барит с анатазом)	Окислы	Bec. %	Атомные количества
Be	-	2	-	SiO_2	15.81	2635
Та		2	_	TiO_2	46.72	5846
Mn	3	3	1	ZrO_2		
Mg	5	6	3	Al_2O_3	0.82	160
Si	9	10	5	Fe_2O_3	15.21	1901
Nb		4	_	MgO	1.54	382
Fe	6	10	4	MnO	0.08	12
Al	1	1	5	CaO	0.03	5
V		3	2	SrO	0.01	1
Ti	9	10	8	BaO	1.92	125
Cu	1	4	1	Nb_2O_5	0.56	42
Ca	3	4	3	Ta_2O_5	0.05	2
\mathbf{Sr}	6	5	6	SO_3	1.17	140
Ba	<1	2	10	$H_2O^{-110\circ}$	5.19	_
Na	5	5	6	H ₂ O до 500°	4.37	5672
Y	7	6	_	H ₂ O до 900°	0.65	
Се	—	_	1			
				Сумма	94,13	

Результаты химического анализа (табл. 2) отражают суммарный состав продуктов выветривания лампрофиллита. На химический анализ была выделена небольшая навеска в 0,5 г¹. Малое количество материала не позволило определить в ней предполагаемые элементы, в частности щелочи, Cl и др. О том, что Na (возможно, и K), Al, Mg входят в состав пробы, говорят результаты спектрального и химического исследования. Вероятно, эти элементы являются составной частью механической примеси — силикатов типа полевого шпата, нефелина или цеолита.

Расчет анализа приводит к следующим результатам²: анатаза — 52,5% (в нем Ті изоморфно замещается Nb и Та), барита со следами Sr — 2,4%,

² Содержание каждого минерала в псевдоморфозах рассчитывалось без учета воды, входящей в состав гидрогётита и кремневой кислоты в неопределенных количествах. Вероятно, часть воды связана также с силикатами и, возможно, с анатазом.

¹ Проба с трудом разлагается в крепкой серной кислоте.

гидрогётита — 16,7%, кремневой кислоты — 18%. О том, что вода в минералах связана в основном с гидрогётитом и аморфной кремневой кислотой, говорят результаты последовательного нагрева навески до 110, 500 и 900° (табл. 2).

Термическим анализом, кроме ряда остановок до 500°, отвечающих выделению воды, установлен экзотермический эффект при 915°, связанный, по-видимому, с переходом анатаза в рутил (Щепочкина, 1958). Небольшая, но четкая эндотермическая остановка с максимумом при 1180° характерна для баритового эффекта. Последующая эндотермическая реакция при 1200—1215° отвечает, видимо, эвтектике и частичному плавлению пробы (Цветков, Вальяшихина, 1955).

Для подтверждения полученных выводов и более точной диагностики минералогического состава продуктов выветривания лампрофиллита был получен ряд порошкограмм. Землистая разновидность оказалась идентичной анатазу (табл. 3).

Таблица З

Порошкограмма анатаза (Си-антикатод; 2R = 57.2 мм; d = 0.3 мм)

hkl*	I	$\frac{d_{\alpha}}{n}$	hkl	Ι	$\frac{d_a}{n}$
-	4	4,617	203	5	1,676
101	10	3,505	_	3	1,493
_	3	2,832	116	1	1,372
_	1	2,583	_	2	1,348
103	5	2,425	300	4	1,253
200	7	1,913	224	3	1,175
210; 105	8	1,715		—	

* Индексы приводятся по В. И. Михееву (1957) при сравнении с порошкограммой анатаза.

Диффузный характер линий свидетельствует либо о слабой кристалличности минерала, либо о микрокристалличности агрегатов. Порошкограмма «каркасной» разновидности оказалась сходной с порошкограммой барита (табл. 4). Эти качественные показатели в общем не давали ясного представления о характере выделения вторичных минералов, об особенностях морфологии кристаллов, если таковые образовывались, и, наконец, о взаимоотношениях между анатазом и баритом. Однозначный ответ на все эти вопросы был получен с помощью электронной микроскопии, выполненной методом реплик в лаборатории ИГЕМ АН СССР А. И. Горшковым.

Землистый анатаз, составляющий резко преобладающую часть псевдоморфоз, даже при увеличении в 24 000 раз не обнаружил заметных следов кристалличности. Для всех разновидностей оказалась типичной однородная шагреневая поверхность, отдельные утолщения которой не превышают сотых долей микрона. По формам выделения различаются: а) округлые почковидные стяжения (рис. 1); б) сплошные «зернистые» массы с кристаллами барита (см. рис. 3); в) участки, состоящие из параллельных друг другу полос; эта последняя разновидность, видимо, отражает направление реликтовой спайности первичного минерала, обладавшего весьма совершенной спайностью в одном направлении.

Участки, слагающие каркас псевдоморфоз, местами имеют существенно баритовый состав. Барит нередко образует правильные хорошо

Рис. 1. Почковидные образования анатаза. Снимок под электронным микроскопом

Рис. 2. Кристаллы барита в анатазе. Снимок под электронным микроскопом

2.4

Рис. З. Скелетные формы роста барита в анатазе. Снимок под электронным микроскопом

ограненные кристаллы, среди которых различаются три разновидности¹ -таблитчатая, псевдокубическая и скелетная. Таблитчатая (рис. 2; рис. 4, *a*) разновидность характеризуется сильным развитием грани пинакоида *c* (001) и сравнительно слабым развитием ромбической призмы *o* (011)

а — таблитчатая; б — псевдокубическая; в — скелетная

и пинакоида a (100). Максимальный размер отдельных кристаллов достигает 1 μ . Кристаллы этого типа, нередко срастаясь параллельно, образуют почти сплошные участки барита. У псевдокубической разновидности (рис. 2; рис. 4, 6) грани c (011) и m (110) развиты более или менее в одинаковой степени. Размер кристаллов не превышает 0,2 μ . Очень интересны

¹ Форма кристаллов, наблюдаемая в электронном микроскопе, определялась по атласу Гольдшмидта. По стереографическим снимкам методом сравнения устанавливались также и индексы отдельных граней.

и характерны скелетные формы роста (рис. 3). На снимках видны грани с (001), o (011) в d (102) (рис. 4, a, δ). По бордюру (001) выделяется узкая полоска, за которой следует впадина (рис. 4, e). Кристаллы этой разновидности встречаются сравнительно редко и, как кристаллы второй разновидности, приурочены к анатазу, выполняющему ячейки каркаса или участки близ перегородок каркаса.

Выветривание лампрофиллита в обычном случае, как отмечено было выше, приводит к образованию анатаза и лимонита. В присутствии пирротина процесс развивается по-иному.

[Как известно, выветривание минерала начинается с того, что первыми выносятся самые крупные катионы. Когда структура минерала уже в какой-то степени нарушена, начинают выноситься и другие катионы, если они не входят в состав новообразований. В хибинском лампрофиллите постоянно присутствуют Ва от 1,09 до 6,75%, иногда до 10,51% (Дудкин, 1959), и Sr от 7,99 до 14,49% (Бонштедт, 1937). Стронций изоморфно замещается Ва, Na — K; Ti — Nb, Ta, Fe, Mn. Самыми крупными катионами являются Ва — 1,43 Å, Sr — 1,27 Å, Na — 0,98 Å.

T	0	б	a.	71	71	a	1	
4	u	0	20	u	ų	u	*	

Іорошкограмма	барита	(Си-аникатод;
2R = 57.3 .	MM; d =	0,3 MM)

		1 1	,	,	
hkl*	Ι	$\frac{d_{\alpha}}{n}$	hkl	I	$\frac{d_a}{n}$
-	5ш	3,415		4	1,513
021	4	3,325	006	2	1,460
112	5	3,047	035	4	1,412
121	3	2,810	400	2	1,350
200	3	2,695	421; 235	6ш	1,252
122	1	2,440	226	1	1,210
212	4	2,205		1	1,187
131; 221	10	2,103	306	1	1,145
104	2	2,042		1	1,130
033	3]	1,860	263	5дв	1,092
	3∫ ^m	1,830		2	1,027
232	3	1,650		—	—

* Индексы приводятся по В. И. Михееву (1957) при сравнении с порошкограммой барита.

Начальная стадия выветривания лампрофиллита характеризуется высвобождением бария и одновременным окислением пирротина с образованием серной кислоты. Барий вступает в реакцию с ионом SO₄²⁻ и выпадает в виде барита, минерала определенного структурного мотива. В дальнейшем в реакции может принимать участие и Sr, но он вынужден иодчиняться существующей уже структуре барита и изоморфно замещать в ней барий.

Выпадение BaSO₄ на первой стадии процесса объясняется также более низкой растворимостью в воде BaSO₄, чем SrSO₄ (табл. 5).

Кроме того, свободная энергия при кристаллизации BaSO₄ несколько выше, чем свободная энергия при образовании SrSO₄: $\Delta F_{BaSO_4}^{\circ} = 323 \ \kappa \kappa a a$, $\Delta F_{SrSO_4}^{\circ} = 318 \ \kappa \kappa a a$.

Из сказанного видно, что несмотря на количественное преобладание Sr над Ba, по лампрофиллиту образуется барит, но не целестин. О том, что в образовании барита принимает некоторое участие и Sr, говорят результаты спектрального и химического анализов. Количество барита, обра-

II

224

Гипергенный барит в Хибинском шелочном массиве

Таблица 5

Соедине- ния	Температура, °С					
	18	25	50	100		
$\operatorname{BaSO_4}_{\operatorname{SrSO_4}}$	0,00222	0,00223 0,01130	0,00336 —	0,0039 0,0114		

Растворимость * BaSO₄ и SrSO₄ (в г/л)

* Справочник по растворимости. Изл-во АН СССР. т. І. 1961.

зующееся в процессе выветривания лампрофиллита, лимитируется только содержанием окисляющегося пирротина. Именно поэтому в проанализированной пробе сравнительно мало Ва и почти нет Sr, хотя суммарное содержание этих элементов в первичном лампрофиллите не менее 14%.

Кристаллы барита и целестина имеют совершенно одинаковый облик. и по внешним признакам различить их невозможно. При диагностике этих кристаллов решающей оказалась порошкограмма, которая для каждого из этих двух минералов имеет вполне определенную характеристику.

Таким образом, в Хибинах установлен новый для этого массива минерал — барит.

Схема реакции выветривания лампрофиллита, учитывая изоморфные в нем замещения, будет следующей:

> $Na_2Sr_2Ti_3\{O [Si_2O_7] (O, OH; F)\}_2 + Fe_{1-x}S + H_2O \rightarrow 3 (Ti, Nb, Ta) +$ лампрофиллит пирротин анатаз +2 (Ba, Sr) SO₄ + Fe₂O₃ $\cdot n$ H₂O + SiO₂ $\cdot n$ H₂O + nH₂O барит гидрогетит коллоидный кремнезем

Все отмеченные в реакции минералы наблюдаются в образцах. Неясным остается только форма нахождения кремнезема. Результаты спектрального и химического анализов указывают на присутствие кремнезема в исевдоморфозах, однако методами рентгеновского и оптических исследований, а также с помощью электронного микроскопа он не устанавливается. Вероятно, SiO₂ · nH₂O выпадает в виде рентгенаморфного тонкодисперсного коллоида. Не исключена возможность, что часть кремнезема, как и избыточное количество Sr, не вошедшее в состав BaSO4, и некоторые другие элементы уносятся за пределы псевдоморфоз и рассеиваются.

ЛИТЕРАТУРА

Бонштедт Э. М., Борнеман-Старынкевич И. Д. Лампрофиллит. Сб. «Минералы Хибинских и Ловозерских тундр». Изд-во АН СССР, 1937. Дудкин О. Б. О бариевом лампрофиллите. — Записки Всес. минер. об-ва, ч. 88.

вып. 6, 1959.

Дорфман М. Д. Линейная (трещипная) кора выветривания в нефелиновых сие-нитах Хибинских тундр. Сб.: «Кора выветривания», вып. 3, 1960. Михеев В. П. Рентгенометрический определитель минералов. Госгсолтехиздат,

1957.

Семенов Е.И. Окислы и гидроокислы титана и ниобия в Ловозерском щелочном массиве. — Труды ИМГРЭ АН СССР, вып. 1, 1957. Цветков А.И., Вальящихина Е.П. Материалы по термическому иссле-

дованию минералов, II. — Труды Ин-та геол. наук АН СССР, вып. 157, 1955.

Щепочкина Н.И. Физико-химические исследования титанатов бария и железа.— Труды ИГЕМ АН СССР, вып. 11, 1958.

15 минералы СССР