И. П. ХАДЖИ, В. А. ДРИЦ, В. Г. ЯРОЦКИЙ, А. Л. ДМИТРИК

НОВАЯ ПОЛИМОРФНАЯ РАЗНОВИДНОСТЬ ВОЛОКНИСТЫХ ФТОРАМФИБОЛОВ Mg7[Si3O22]F2

Синтез амфиболов, и в частности их волокнистых разновидностей (амфиболовых асбестов), имеет важное значение как с точки зрения выяснения термодинамических и физико-химических условий их образования, так и в связи с необходимостью получения материалов с новыми технологическими свойствами. Последнее связано с тем, что синтетические гидроксил- и фторсодержащие амфиболовые асбесты широко используются в различных отраслях промышленности [1]. Естественно, что свойства волокнистых амфиболов зависят не только от морфологии кристаллов, но также от их состава и структуры. Поэтому несомненный интерес представляют исследования по получению новых полиморфных модификаций этих минералов.

Известно, что среди гидроксилсодержащих амфиболов, в составе которых нет кальциевых и щелочных катионов, до настоящего времени ни в природных, ни в экспериментальных условиях не удалось обнаружить чисто железистых орторомбических и чисто магнезиальных моноклинных разновидностей [2—6]. Л. Ф. Григорьева с соавторами [1] провели обширные и систематические исследования с обобщением литературных данных по изучению фазовых соотношений в системах MgO—MgF₂—SiO₂—Na₂O и MgO—MgF₂—SiO₂ в интервале температур 600—1200° С. Они отметили, что чисто магнезиальных ромбических или моноклинных фторамфиболов также не установлено.

В данной работе описаны условия кристаллизации, структурно-кристаллохимические и морфологические характеристики волокнистого моноклинного фторамфибола, близкого по составу к $Mg_7[Si_8O_{22}]F_2$. Эта фаза получена в системе $MgO-MgF_2-SiO_2$ -NaCl, которая отличается от исходной смеси в экспериментах других исследователей заменой Na₂O на NaCl. Синтезированное соединение можно назвать фторкупфферитом, поскольку термин купфферит первоначально предназначался для обозначения чисто магнезиального члена в ряду моноклинных амфиболов следующих составов $Mg_7[Si_8O_{22}](OH)_2$ (купфферит), $(Mg, Fe)_7[Si_8O_{22}](OH)_2$ (срюнерит).

Условия эксперимента

Шихта, соответствующая составу 6MgO·MgF₂·8SiO₂·2NaCl помещалась в железные тигли, которые герметизировались и подвергались нагреву в интервале температур 800—1000—1200° С в течение двух суток. Продукты синтеза представляли спутанно-волокнистую массу желтовато-белого цвета. На верхней и нижней части синтезированного монолита, а также на крышке и стенках тигля образовывались своеобразные «щетки» из длинных волокон, растущих по нормали к упомянутым поверхностям.

Изучение фазового состава продуктов синтеза, полученных при каждой температуре, проводилось раздельно как для обогащенных частей, так и для мономинеральных образований на внешней поверхности монолита.

Структурно-морфологическая характеристика синтезированных фторамфиболов

ø

При T=1000° С «щетковидные» выделения представлены мономинеральным F-купфферитом. На (рис. 1, а) приведена дифрактограмма ориентированного препарата, на которой отчетливо выделяются характерные для волокнисто-ленточных амфиболов довольно сильные рефлексы hko. Отражения с аналогичными d(hko) могут наблюдаться как для моноклинных, так и для ромбических разновидностей. Моноклинную решетку исследуемой фазы удалось отличить от ортогональной с помощью индицирования дифрактограммы неориентированного образца (рис. 1, б) и сопоставления наблюдаемых интенсивностей с рассчитанными для структур антофиллита и куммингтонита [8]. Дифрактограмма исследуемой фазы заметно отличается от дифракционной картины фторрихтерита значением межплоскостных расстояний сильных отражений с индексами 110 и 310 (для фторрихтерита d(110) = 8,47 Å и d(310) = 3,15 Å), а от антофиллита — наличием достаточно сильных отражений с d(113(=3,84 Å и d(221)=2,97 Å (рис. 1, б). С другой стороны, отражения с d, равными 3,67 Å и 2,84 Å, характерные для орторомбического антофиллита, отсутствуют на дифракционной картине исследуемого соединения. Мономинеральность синтезируемого F-купфферита подтверждается тем, что удалось проиндицировать все линии дифрактограммы с параметрами элементарной ячейки c=5,278 Å; b==17,98 Å; α=9,512 Å; β=102°12′. В табл. 1 для сравнения приводятся рассчитанные и экспериментальные значения d, индексы и интенсивности наблюдаемых дифракционных отражений.

Доказательством того, что катионы Na, несмотря на их присутствие в исходной шихте, практически не входят в структуру синтезируемой фазы, служат результаты химического анализа (табл. 2). Рассчитанная на их основе структурная формула (Na_{0,06}Mg_{6,54}Fe³⁴_{0.23})_{6,83}. ·[Si_{8,04}O_{21,97}F_{0,03}]F_{2,03} близка к идеальной, хотя отличается от нее небольшим дефицитом катионов за счет присутствия трехвалентного железа.

таолица в	Габлиц	a	1
-----------	--------	---	---

hkl	ďp	də	I,	hkl	dp	d ₉	<i>I</i> ,9
020	8,99	8,988	19	331	2,649	[
110	8,281	8,268	50	061	2,592	2,588	10
001	5,159			260	2,521		
130	5,044			022	2,480		
111	4,822			202	2,492	2,4937	
040	4,495	4,4801	20	222	2,402		
220	4,139	4,1371	25	350	2,352		
111	4,050			401	2,322		
$\bar{2}01$	3,895	3,863	18	171	2,284		
131	3,831	3,840	20	351	2,283	2,279	6
221	3,574			080	2,248	2,243	8
131	3,415	3,41	16	420	2,257		
041	3,390	3,398	8	421	2,248		
150	3,355			132	2,197	2,171	10
240	2,238	2,2291	35	312	2,214		
201	3,145			171	2,186		
310	3,063	3,054	100	261	2,170		
060	2,998			332	2,091		
221	2,968	2,97	16	202	2,076		
241	2,939			081	2,061	2,069	3
151	2,917			440	2,070		
311	2,915		100	222	2,022	2,0195	3
151	2,721	2,741	22	280	2,025		

Экспериментальные и расчетные значения межплоскостных расстояний и интенсивностей отражений исследуемой фазы

Таблица 2

химический состав волокнистой фазы						
Компоненты	Содержание, %	Компоненты	Содержание,			
SiO2 Fe2O3 MgO	61,30 2,31 33,46	$Na_2O \\ F \\ O = F_2$	$ \begin{array}{c c} 0,24 \\ 4,90 \\ 2,06 \end{array} $			
		Сумма	100,15			

Химический состав волокнистой фазы

Принадлежность исследуемой фазы к F-купффериту, т. е. моноклинной разновидности амфибола с пр. гр. C2/m, подтверждается также результатами ее изучения методом микродифракции электронов. Данные этого метода в сочетании с электронно-микроскопическим изображением объекта позволяют не только диагностировать амфиболы, но и устанавливать морфологические особенности микромонокристаллов, изучать механизм минералообразования и т. п. [9—14]. Вместе с тем изучение волокнистых амфиболов методом микродифракции сопряжено с рядом трудностей, для преодоления которых следует иметь в виду следующие обстоятельства. Микромонокристаллы волокнистых соединений вытянуты параллельно [001] и, следовательно, для них невозможно без использования ультратонких срезов получать сечения обратной решетки с индексами узлов *hko*.

Из дифрактограммы ориентированного препарата следует, что наиболее развитые грани волокнистых кристаллов должны иметь индексы (110) и (100). Естественно, что на подложке объекта кристаллы будут лежать именно этими гранями. Однако направлению первичного пучка, перпендикулярного плоскостям (110) и (100), точно не соответствуют рациональные сечения обратной решетки, проходящие через начало координат. Пусть, например, кристаллы лежат на подложке плоскостью (100). В этих условиях первичный пучок будет совпадать с осью X^{*} обратной решетки. Для параметров обратной решетки анализируемого амфибола справедливо, что 2,615 $c^* \cos \beta = a^*$, или 13 $c^* \cos \beta = 5 a^*$, и, следовательно, вектору X^* перпендикулярен вектор [5013]*. Ясно, что плоскость сечения обратной решетки, включающая вектора [010]* и [5.0.13]*, будет отображаться на электронограмме в основном только рефлексами oko. Таким образом, для получения рациональных плоскостей обратной решетки моноклинных амфиболов необходимо в электронном микроскопе иметь гониометрическое устройство, позволяющее изменять ориентировку кристаллов относительно первичного пучка.

Трудности в интерпретации точечных электронограмм возникают также из-за широко распространенного в структурах моноклинных амфиболов двойникования в плоскости (100). Наложение дифракционных картин от двух индивидов двойника не только симулирует изменение симметрии объекта, но и служит причиной появления «запрещенных» рефлексов, обусловленных эффектами вторичной дифракции [10].

Наконец, следует учитывать, что синтезированные кристаллы могут отличаться либо формой элементарных ячеек (моноклинной или орторомбической), либо пространственной симметрией при одной и той же их геометрии (C2/m или P2₁/m, Pnma или Pnmn).

На рис. 2, a-b приведен ряд точечных электронограмм от микромонокристаллов исследуемой фазы, полученных в электронном микроскопе JEM-7 с применением гониометрического устройства. На рис. 2, *а* точечная электронограмма содержит рефлексы $\overline{h}kh$, которые распределены в соответствии с пр. гр. C2/*m* по центрированному мотиву. Оси прямоугольной сетки точечных рефлексов совпадают с осью y^* и вектором [101]*. Точечная электронограмма на рис. 2, *б* характеризуется таким же распределением сильных рефлексов, что и приведенная выше, по, кроме того, на ней присутствуют слабые отражения, запрещенные пр. гр. C2/*m*.

Аналогичные картины описаны Хитчисаном и др. и В. А. Дрицем и др. [10, 13] для природных и искусственных волокнистых амфиболов соответственно. Появление подобных дифракционных эффектов обусловлено двойникованием, при котором два индивида имеют общее направление осей *b* и *c*, а их оси *a* связаны плоскостью зеркального отражения. После соответствующего изменения ориентировки кристалла за счет его поворота вокруг оси *b* возникает дифракционная картина, в которой по сравнению с электронограммой на рис. 2, *б* на нечетных слоевых линиях «сильные» отражения становятся слабыми и наоборот (рис. 2, *в*). Если в случае электронограммы на рис. 2, *б* сильные рефлексы характеризуются индексами *hkh*, а слабые *okl* (см. также рис. 2, *г*), то на электронограмме рис. 2, *в* сильные рефлексы имеют индексы *okl*, а слабые *hkh*.

Более наглядно эффект двойникования виден на электронограмме рис. 3, на которой легко можно видеть две «моноклинных» сетки рефлексов. По расстоянию между рефлексами *hko* на нулевой слоевой линии нетрудно определить их индексы: *n*, 3*no* (130, 260 и т. д.). Рефлексы одной сетки на других слоевых линиях имеют индексы *n3nl*, а другой — *n*—1, 3n+1, *l*. Угол между векторами [[130]* и [[001]* равен 96° в соответствии с данными рис. 3. Однако часто на картинах микродифракции интенсивности всех рефлексов одинаковы (рис. 4). Это обус-

Рис. 2. Точечные электронограммы и проекция плоскости (010) * обратной решетки двойника купфферита

a — точечная электронограмма с рефлексами $\bar{h}kh$; δ — точечная электронограмма с сильными $\bar{h}kh$ и слабыми okl рефлексами; a — точечная электронограмма с сильными okl и слабыми $\bar{h}kh$ рефлексами; c — B и B сечения сферой звальда решетки двойника, соответствующие электронограммам δ и a

Рис. 3. Точечная электронограмма, отображающая рефлексы двойника купфферита Рис. 4. Точечная электронограмма фторкупфферита: волокно ориентировано по подложке гранью (100), давая отражения типа *hk2h*

Рис. 5. Электронно-микроскопическое изображение фторкупфферита *a* — суспензия; *б* — платиноугольная реплика

ловлено эффектами динамического вторичного рассеяния электронов, приводящими к нивелировке в распределении интенсивностей.

Отличительная морфологическая особенность кристаллов исследуемой фазы состоит в том, что они значительно тоньше и длиннее волокон F-рихтеритов, синтезированных в идентичных термодинамических условиях [1, 7]. На рис. 5, а представлен общий вид микромонокристаллов F-купфферита. С помощью метода платиноугольных реплик удалось

Рис. 6. Электронограмма фторкупфферита с пр. гр. P2₁/m

а — плоскость (100) * обратной решетки;
 б — плоскость (021) * обратной решетки

Рис. 7. Точечная электронограмма с рефлексами *hko* фторсмектита и рефлексами *okl* амфибола

отчетливо наблюдать гранную форму этих лентовидных кристаллов (рис. 5, δ). Индексы граней легко установить, если в соответствии с данными рентгеновского анализа принять, что наиболее развиты грани (110) и (100). С помощью метода микродифракции удалось установить, что амфиболовые кристаллы волокнистой «щетки», синтезированной при 900—950° С, имеют моноклинную ячейку с пр. гр. P2₁/m.

На рис. 6, а представлена точечная электронограмма с рефлексами okl. В соответствии с наличием в структуре винтовой оси «погасания» иаблюдаются только среди отражений для K=2n+1. Моноклинная форма ячейки с углом $\beta=102^\circ$ хорошо видна на электронограмме (рис. 6, δ), изображающей плоскость (021)* обратной решетки. В соответствии с пр. гр. P21/*m* на нулевой слоевой линии содержатся отражения *hoo*, на второй *h12*, на четвертой *h24* с четными и нечетными значениями *h*. Рефлексы на электронограмме сильно вытянуты вдоль *a*, что, очевидно, обусловлено очень Малыми в этом направлении размерами пластин когерентного рассеяния. Одна из возможных причин этого связана с дефектами упаковки за счет двойникования в плоскости (100) [10].

В проекции клиноамфиболовой структуры на плоскость *ac* легко можно выделить ламелли шириной 4,7 Å, ограниченные плоскостями (100) или (200), проходящими через центры катионов. Если два дефекта упаковки, связанные с двойникованием, встречаются в двух последовательных плоскостях (200), то возникает прослойка протоамфибола. Две части кристалла, отделенные такой пластиной, будут некогерентными, так как разделены расстоянием $a \sin \beta$, нормальным к (001), а не вектором \bar{a} . Если аналогичное двойникование происходит в плоскостях (100), то образуется антофиллитовая пластинка с аналогичным нарушением когерентности частей кристалла, которые она соединяет. Механизм образования подобных дефектов упаковки подробно рассмотрен Чайшолмом [9] и Хитчайсаном и др. [10].

15

Рассмотрим фазовый состав основной массы монолита, полученной при разных температурах. При 800° С синтезируется практически мономинеральный смектит. Своеобразие этой фазы в том, что в исходном состоянии в ее структуре между 2:1 слоями нет молекул воды, которые не проникают в межслои даже после интенсивного вымачивания образца. Дифрактограмма ориентированного препарата содержит целочисленную серию сильных базальных отражений с d(001) = 9,60 Å (если не применять других обработок, то эту фазу можно ошибочно принять за тальк). После насыщения образца этиленгликолем происходит однородное разбухание всех межслоев, сопровождающееся появлением на дифрактограмме базальных отражений *col* с d(001) = = 16,9 Å.

Просмотр препарата в электронном микроскопе выявил наличие единичных тонковолокнистых кристаллов амфибола. Содержание F-купфферита модификации P2₄/m увеличивается при температуре синтеза 900° С — 950° С, однако в соизмеримых количествах присутствует кристобалит, форстерит, пироксены. Фторсмектита — очень мало. В интервале температур 1000—1100° С в продуктах синтеза содержится более 70% волокнистой фазы, представленной моноклинным амфиболом и клиноэнстатитом. Кроме того, в образцах присутствуют кристобалит и форстерит.

Сочетание методов дифракционного контраста и микродифракции электронов позволило получить некоторые новые данные о механизме формирования фторамфиболов, и в частности показать, что эта фаза может образовываться не только в процессе реакций кристаллизации из расплава и газовой среды, но также в результате трансформационных преобразований слоистого силиката. На рис. 7 представлена точечная электронограмма, которая содержит две наложенные дифракционные картины. Одна из них представлена гексагональной сеткой сильных рефлексов и относится к слоистому силикату — F-смектиту. Кристалл слегка наклонен относительно оси, соединяющей два самых сильных ближайших рефлекса, что обусловило нарушение гексагональной симметрии в распределении интенсивностей рефлексов и в их расположении.

Вторая более слабая система рефлексов располагается слоевыми линиями с периодами в 18 и 5,3 Å, т. е. относится к амфиболовой составляющей. Сбоку электронограммы помещено изображение объекта, с которого получена дифракционная картина. В режиме дифракционного контраста хорошо видно две составляющие, одна из которых относится к F-смектиту, а другая — узкая тонкая полоска, расположенная на краю кристалла, — представлена амфиболом. Наличие двух фаз в пределах одного кристалла можно видеть также на рис. 8, a-e. На границе двух фаз в случае тонкого и слегка изогнутого кристалла наблюдается характерный излом изгибных контуров экстинкции (рис. 8, b). На рис. 8, a видно, что амфиболовая лента, возникшая в результате трансформационного преобразования F-монтмориллонита, может отщепляться от основной матрицы кристалла. Характерно, что «закладка» волокон может происходить не только по периферии, но и в средней части кристалла (рис. 8, e).

Наличие в одном кристалле двух фаз наиболее часто наблюдается в продуктах синтеза, полученных при температурах 900—950° С, т. е. в условиях, промежуточных между областями термальной устойчивости слоистых силикатов ($800-850^\circ$ С) и амфиболов ($1000-1100^\circ$ С). Следует отметить, что при $T=900^\circ$ С в общей массе продуктов синтеза содержится достаточно большое количество отдельных прозрачных воло-

Рис. 8. Электронно-микроскопическое изображение, иллюстрирующее трансформационное преобразование фторсмектита

- а отщепившаяся лента фторкупфферита;
 б фрагмент кристалла, состоящего из
- фторсмектита и фторкупфферита; в «закладка» волокна в средней части кристалла слоистого силиката

Рис. 9. Точечная электронограмма от волокна фторкупфферита, получен-ного при 900° С

11 Новые данные о минералах, вып. 28

кон длиной свыше 10 мкм и шириной от 500 Å до 8000 Å. Необычна дифракционная картина этих объектов, показанная на рис. 9. Если на нулевой слоевой линии расположены сравнительно острые рефлексы с периодичностью 9,0 Å, то на остальных слоевых линиях они сливаются в почти непрерывные полосы, параллельные оси в. Появление подобной дифракционной картины, очевидно, связано с наличием в структуре объекта большого числа так называемых дефектов Вадслея [9]. Природа этих дефектов связана с внедрением в амфиболовую структуру встроек из пироксеновых цепочек либо трехрядных лент. Экспериментальное подтверждение реального существования дефектов Вадслея в амфиболах получено Хитчайсаном и др. [10]. В рассмотренном случае структура кристалла образована, по-видимому, сочетанием неупорядоченно чередующихся амфиболовых и пироксеновых лент.

1. Впервые синтезирован моноклинный практически чисто магнезиальный фторсодержащий амфибол; определены условия образования этого соединения.

2. Методом микродифракции электронов обнаружены две модификации F-купфферита с пр. гр. С2/т и пр. гр. Р2,/т.

3. Установлены морфологические особенности строения лентовидных кристаллов синтезированного соединения и встречающиеся в них типы структурных дефектов.

4. Показано, что наряду с ростом волокон в процессе реакций кристаллизации из расплава и газовой фазы возможно образование ленточного амфибола за счет трансформационных преобразований слоистого силиката — фторсмектита.

5. Выявлены различия фазового состава основной массы синтезируемого монолита и образующейся на его поверхности и стенках тигля волокнистой «щетки».

ЛИТЕРАТУРА

1. Григорьева Л. Ф., Макарова Т. А., Корыткова Э. Н., Чигарева О. Г. Синтетические амфиболовые асбесты. Л., 1975. 250 c.

47

- Bowen N. L., Tuttle O. F. The system MgO-SiO₂-H₂O.-Bull. geol. Soc. Amer., 1949, v. 60, p. 439-460.
 Creenwood H. I. The synthesis and sta-bility of anthophyllite.-J. Petrol., 1963, v. 4, p. 317-351.
 Hinrichsen Th. Über den Stabilitatsbe-roich der Mc. Ec. Al mischkristellsei
- reich der Mg-Fe-Al mischkristallreiche rhombischer Hornblenden.- Neues Jahrb. Mineral. Monatsh., 1967, 257-270.
- 5. Schurmann K. Hydrothermale experimentelle Untersuchungen an metamorphen monoklinen Hornblenden. T. 1.-Neues Jahrb. Mineral. Monatsh., 1967, 270-284.
- 6. Gameron K. L. An Experimental study of Actinolite — Cummingtonite Phose Relations Mith Notes on the Synthesis of Fe-rich Anthophyllite.— Amer. Mineral., 1975, v. 60, p. 373—390. 7. Гончаров Ю. И., Коваленко
- *B. C*. К механизму образования амфиболо-вых асбестов.— Геохимия, 1973, № 5, c. 782-787.
- 8. Borg I. Y., Smith D. K. Calculated X-ray powder patterns for silicate mi-nerals.— Geol. Soc. Amer. Met., 1969, v. 122, p. 896.

- 9. Ghisholm I. E. Planar defects in fibrons amphiboles .- J. of Materials Schince,
- 1973, v. 8, p. 475–483.
 10. Hutchison I. L., Irusteta M. G., Whitta-ker E. I. W. High Resolution Elec-tron Microscopy and Diffraction Studi-es of Fibrous Amphiboles– Acta Cryst., A 21, 1075 704.
- А-31, 1975, р. 794.
 11. Дриц В. А., Дмитрик А. Л., Гончаров Ю. И., Хаджи И. П. Микродифракционные исследования цепочечных силикатов NaMg₄SiO₁₅(OH)₃ И Na1,3Mg4,7Si6O16,7F1,3. Matep. IX Beecoюз. конф. по электронной микроскопии. М., 1973, с. 91.
- 12. Дриц В. А., Гончаров Ю. И., Алек-сандрова В. А., Хаджи В. Е., Цмитрик А. Л. О новом типе ленточных силикатов. Кристаллография, т. 19. вып. 6, 1974.
- 13. Дриц В. А., Дмитрик А. Л., Хаджи И. П. Микродифракционное изучение волокнистых силикатов с ленточно-цепочечной структурой. Тезисы докл. Х Всесоюз. конф. по электронной микроскопии. М., 1976. 322 с.
- 14. Дриц В. А., Гончаров Ю. И., Хаджи И. П. Условия образования и физикохимические свойства трехрядноленточного силиката с радикалом [Si₆O₁₆].--Изв. АН СССР. Геол., 1976, № 7. c. 32-41.