АКАДЕМИЯ НАУК СССР

ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

Вып. 19

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

1969

к. С. ЕРШОВА, М. Ф. КАШИРЦЕВА, Г. А. СИДОРЕНКО, Л. С. СОЛНЦЕВА

НОВЫЕ ДАННЫЕ О НЕКОТОРЫХ СВОЙСТВАХ НАТРООТЕНИТОВ

Впервые Na-отенит был описан А. А. Черниковым и другими в 1957 г. Нам также представилась возможность изучить некоторые свойства этого минерала, связанного с инфильтрационными месторождениями (Каширцева, 1964). В частности, мы поставили себе задачу изучить изменение натроотенитов в процессе нагревания по инфракрасным спектрам поглощения (ИКС), диэлектрической проницаемости (д. п.) и рентгенограммам. Для этой цели был отобран натроотенит из двух разновозрастных и разных по составу и проницаемости толщ: водоупорных глин и нижележащих водопроницаемых рудоносных песков (рис. 1), в которых располагаются также и черниевые рудные залежи. В дальнейшем будем называть описываемые минералы Na-отенит I (из глин) и Na-отенит II (из песков).

Рис. 1. Распределение урановой минерализации

1 — граниты; 2 — глины; 3 — пески и песчаники; 4 — зона поверхностного окисления; 5 — зона пластового окисления; 6 — зона накопления окислов урана; 7 — скопление Na-отенита II; 8 — скопление Na-отенита I; 9 — уровень грунтовых вод; 10 — граница распространения зоны поверхностного окисления; 11 — разлом

N а-отенит I распространен по трещинам, полостям в глине, иногда выполненным квард-карбонатными жилообразными телами. Он встречается в виде отдельных прекрасно образованных кристаллов таблитчато-пластинчатой формы часто восьмиугольного габитуса розетчатых или сноповидных скоплений (рис. 2, *a*, *б*) размером до 0,5—0,7 см и тонких корочек. Окраска кристаллов— от бледно-желтой до травяно-зеле-

Рис. 2, а, б. Розетчатые агрегаты Na-отенита. Увел. 10

ной, причем наблюдается следующая закономерность: кристаллы, располагающиеся на поверхности обнажения или в трещинах недалеко от поверхности, слабее окрашены, чем кристаллы, расположенные глубже от поверхности. Минерал обладает совершенной спайностью по (001) и менее совершенной по (100).

Химический состав минерала (табл. 1) в целом аналогичен составу, установленному А. А. Черниковым (1957), А. А. Черниковым и др. (1957), М. А. Алексеевой и др. (1958). Кристаллохимическая формула изучаемого Na-отенита: Na_{1,72} K_{0.24} Ca_{0,04} (UO₂)_{2,04} (PO₄)₂ 6,5 H₂O; по А. А. Черникову: Na₂(UO₂)₂ (PO₄)₂ nH₂O; по М. А. Алексеевой и др.: Na₂(UO₂)₂ (PO₄)₂6H₂O.

Таблица 1

	Na-от	енит *	По данным				
Компо- ненты	I	II	А. А. Черни- кова (1957)	М. А. Алек- сеевой и др. (1958)			
UO_3 P_2O_5 Na_2O K_2O CaO $\pm H_2O$	63, 6 15, 5 6, 6 14, 4	64,1 15,6 5,9 1,2 0,2 12,9	$\begin{array}{c} 61,9-62,63\\ 14,69-15,56\\ 5,62-8,88\\ -\\0,14-1,2\\ 13,07-14,84 \end{array}$	59,46 15,90 7,34 13,64			
Сумма	100,1	9 9,9	_	_			

Химический состав Na-отенитов, %, вес.

* Анализ выполнен Е. Е. Левиной.

Наблюдается частая ассоциация Na-отенитов с гипсом, гидроокислами железа и марганца. Последовательность образования минералов не всегда удается выяснить. Однако отмечается, что в ассоциации Na-отенит — гипс — окислы марганца вначале образовались натроотенит и окислы марганца, затем вокруг них образовались каемки гипса I (шестоватого, тонковолокнистого), и после этого начал выделяться в цементе гипс II. В ассоциации Na-отенит — аутигенный кварц — окислы марганца Na-отенит выделился последним. Гидроокислы железа то предшествуют Na-отениту (налеты, «присыпки»), то образуют взаимные прорастания. Повидимому, образование гидроокислов железа происходило в широком интервале времени, возможно, они начали образовываться совместно или даже раньше окислов марганца и натроотенита и продолжают формироваться до настоящего времени.

N а-отенит II, встреченный в нижележащих окисленных песках, по своим свойствам в целом почти аналогичен свойствам Na-отенита I, в частности по элементам-примесям (табл. 2), оптическим свойствам (табл. 3) и т. д. Отличают его наряду с меньшими размерами кристаллов более низкое двупреломление, показатели преломления, несколько больший удельный вес и, как мы увидим ниже, значительно более низкое содержание воды и величина диэлектрической проницаемости.

Таблица 2

Na-отениты	Очень много (целые %)	Есть (около 0,1%)	Мало (около 0,01%)	Следы (около 0,001%)	
I	P, U, Na	Si, Al, Ca	Mg (?)	Fe (?), Cu (?)	
II	U (n.10); P (10); Na (3-5)	Ca (0,1)	Fe, Mn (0,01)	Ca (0,001); Mg (0,005)	
По А. А. Черникову (1957)	U, P, Na	Fe	Ca, Al, Si	-	
По М. А. Алексеевой и др. (1958)	U, Na, P	Si, Li (?)	Al, Mg, Mn	Fe, Yb	

Данные спектрального анализа Na-отенитов

Удельный вес Na-отенита I равен 3,6; определен с помощью микропоплавка по методу О. В. Щербака и В. Н. Карюкиной (1963). Удельный вес Na-отенита II несколько больше; это объясняется тем, что определение выполнено недостаточно точно, так как было мало материала. При длительном замере цвет минерала изменяется до оранжево-желтого, а удельный вес значительно увеличивается (до 3,95), вероятно, за счет «набирания» минералом таллия из жидкости.

Таблица З

Свойство	I	II	по А. А. Чер- никову (1957)	по М. А. Алек- сеевой и др. (1958)	
Сингония	Тетрагона	льная		_	
Облик кристаллов	Таблитчато-пл	астинчатый			
Агрегаты	Сноповидные, табли:	гчатые, розетчатые	Чептус- и весро- образные	-	
Размер агрегатов, см	До 0,5—0,7	До 0,1	0,3—0,5	0,5-0,3	
Цвет	Желтовато-зеленый, травяно-зеленый	Желтовато-зеле- ный	Лимонно-желтый, салатно-желтый	Желтый до сла- бого зеленовато- желтого	
Блеск	Перламутровый по	плоскости спайн стеклян	ости (001), в друг ный	ом направлении	
Твердость		2	2-2,5	2-2,5	
Удельный вес	3,6-3,65	3,95 (?)	3,584	_	
Цвет люминесцен- ции	Яркий зеленоват желти	о-голубовато- ый	Зеленова	' го-желтый	
Оптический ха- рактер	Оптически одноосные	отридательные]	-	_	
Ng	1,590	1,573	1,578-1;585	_	
Np	1,558	1,558	1,559-1,564	Nm - 1,582	
Ng — Np	0,032	0,015	_	-	
Плеохроизм	От бес	цветного (Np) до	желтого (Nq и N	(m)	
Д. п.	24,41	10,04	-	-	

Свойства Na-отенита

Ниже приведены результаты изучения Na-отенитов при нагревании и сравнения их с Ca-отенитами ¹.

ИНФРАКРАСНЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ

ИКС Na-отенита I и Ca-отенитов были получены на инфракрасном спектрофотометре UR = 10. Препараты готовили осаждением слоя сухого порошка исследуемого минерала из взвеси в CCl_4 на подложку KBr. Были получены ИК-спектры поглощения исходных образцов и нагретых до 400° (через каждые 30—50°). Исследования проводили при повышенных температурах. Для этого препарат помещали в специальную нагревательную кювету. Температуру измеряли платино-платинородиевой термопарой, помещенной непосредственно у слоя исследуемого образца. Нагревание для определения потери веса образца в нагревательной кювете при каждой температуре проводили в аналогичной термопечи на таком же препарате. Образец взвешивали как непосредственно при повышенных температурах, так и после охлаждения предварительно нагретого образца.

Метод исследования ИКС при повышенных температурах выбран в связи с тем, что минерал способен быстро поглощать воду в процессе

¹ Образцы Са-отенита нам любезно предоставила Е. В. Копченова, за что авторы выражают ей глубокую благодарность.

охлаждения. Помещение нагретого образца в масло или парафинирование не предохраняет его от поглощения влаги воздуха.

Обнаружено, что ИКС Na-отенита тождествен (в пределах опибки опыта) ИКС Ca-отенита; оба они характеризуются следующими полосами поглощения (в cm^{-1}) (рис. 3, *a*, *б*,): 400, 470, 545, 600, 825, 925, 1020, 1120, 1660 и 3300. Полоса 925 cm^{-1} относится к асимметричному валентному колебанию катиона UO₂; полосы 1660 cm^{-1} и широкая 3300 cm^{-1} — к деформационному и валентному колебаниям воды в форме H₂O, остальные — к колебаниям комплексного аниона PO₄ или P₂O₇.

При нагревании до 150° через каждые 50° ИКС Na-отенита изменяется: появляется и непрерывно увеличивается по интенсивности полоса поглощения 650 см⁻¹, интенсивность полосы 810 см⁻¹ постепенно уменьшается; так же постепенно уменьшается интенсивность полос 1615 см⁻¹ (деформационные колебания H₂O) и широкой 3000—3600 см⁻¹ (валентные колебания H₂O), причем максимум последней непрерывно смещается в сторону больших частот (в исходном образце 3450 см⁻¹, а при 100°—3500 см⁻¹).

При температуре 150° полосы поглощения воды в ИКС вещества отсутствуют. Нагревание от 150 до 400° не изменяет ИКС вещества. ИКС охлажденного минерала (с последующим его выдерживанием на воздухе в течение суток) становится аналогичным ИКС исходного образца.

ИКС образца Са-отенита при нагревании до 400° через каждые 50° (см. рис. 3) показывает, что: 1) полосы воды удаляются полностью при 200°; 2) после 200° заметно расширяются полосы поглощения аниона, их структура расщепления размывается; по-видимому, это соответствует переходу

Рис. 3. Инфракрасные спектры поглощения Na-отенита (a) и Ca-отенита (б) при нагревании образцов до 400° через каждые 50°

16

ОБЕЗВОЖИВАНИЕ

Дифференциальные кривые нагревания¹ Na-отенита I и Ca-отенита в основном тождественны: два четко выраженных эндотермических эффекта отмечаются при 100—200 и 200—300° с максимумом при 160 и 200° (рис. 4), что характерно для метаформ отенита (Амбарцумян и др., 1961). В табл. 4 приведены результаты обезвоживания отенитов, а также изменение значений д. п.

Обезвоживание и определение диэлектрической проницаемости минералов в процессе их дегидратации проводились по методике Е. В. Рожковой и др. (1961).

Таблица 4

ату-	Na-отенит I (14% H ₂ O)		Са-отенит		ary-	Na-отенит I (14% H ₂ O)		Са-отенит	
Temilep pa, °C	потеря Н ₂ О, %	д. п.	потеря Н ₂ О, %	н д. п. Д. М. Ваниеваниеваниеваниеваниеваниеваниеваниев		потеря Н ₂ О, %	д. п.	потеря Н ₂ О, %	д. п.
20 60 100 140	8,0 2,0 1,0	21,4 21,4 21,4 21,4 21,4	1,0 7,0 2,0	8,32 8,63 8,92 9,50	$200 \\ 300 \\ 400 \\ 450$	3,0 	,21,4 21,4 	1,0 1,0 0,5 0,5	8,92 8,90

Данные о потерях веса и изменении д. п. отенитов при различных температурах

Как следует из табл. 4, вся вода из Na-отенита I удаляется до 200°, причем более 70% — до 100°, д. п. Na-отенита не изменяется по мере его дегидратации, наблюдается лишь изменение цвета, который из желтоватозеленого становится ярко-желтым уже при 220°. Интересно, что этот отенит, прокаленный до 1000° и оставленный на воздухе, через 36 час полностью восстанавливает потерянную воду и цвет.

Рис. 4. Кривые нагревания отенитов 1 — Na-отенит с 14% H₂O; 2 — Na-отенит с 7% H₂O; 3 — Ca-отенит с 13% H₂O

У Са-отенита выделение воды затягивается до 450°. Д. п. в процессе обезвоживания изменяется несколько иначе, чем у Na-отенита. При нагревании от 20 до 140° д. п. возрастает, а после 200° ее значение начинает понижаться.

Поведение Са-отенита после нагревания также существенно отличается от регидратации Na-отенита. Прогретый до 150° Са-отенит выделенную воду полностью не восстанавливает, что, по-видимому, связано с начавшейся уже аморфизацией вещества.

РЕНТГЕНОГРАФИЧЕСКОЕ ИЗУЧЕНИЕ

Рентгеновское изучение Na-отенита и (для сопоставления) Са-отенита, проведенное методом Дебая, обнаруживает при несомненном кристаллохимическом родстве определенное структурное своеобразие Na-отенита, отражающееся в полном наборе значений межплоскостных расстояний (табл. 5). Однако все изучавшиеся образцы являются метаформами минерала в примерно одинаковой степени гидратации, ибо, судя по значению

2 Заказ № 1960

¹ Термограммы получены в лаборатории Ф. В. Сыромятникова.

Таблица 5

Значения межплоскостных расстояний отенитов (камера РКУ-114, FeK_{x, S} 35 кс, 10 ма)

	Са-отенит		N	Та-отенит		Са-отенит			I	Na-отенит		
ThLl	d/n	I	hl.I	d/n	I	hll	d/n	I	hll	d/n	1	
(0013)	(9,100)	2	001	(9,25)	3	_	1.703	2	005	1.703	1	
001	8,223	10	001	8.48	10	005	1.675	3	_	1.657	1	
	7,611	1		6,905	1	224	1.590	9	224	1.618	4	
	7,036	1	(1013)	(5,859)	2		1,569	1	_	1,598	2	
-101 ^β	(5, 828)	3		_		_	1,557	1	304	1,571	3	
101	5,306	9	101	5,331	9	_	1,533	1	205	1,538	3	
110	4,914	3		4,892	5	_	1,517	6	_	1.530	5	
002	4,632	2	002	4,670	2	-	1,478	1		1,454	2	
002	4,203	8	002	4,235	8	_	1,448	2			- 1	
(102 ^β)	(3,942)	3	102	3,997	3	006	1,425	1	006	1,431	1	
(200B)	(3,823)	2	(200 β)	(3,786)	2	-	1,387	1	_	1,405	1	
102	3,595	10	1(2	3,630	10		1,372	5	_	1,375	3	
200	3,466	6	200	3,466	7	- ⁻	1,351	1	_	1,353	6	
211	2,911	6	121	2,904	7		1,336	5	_	1,323	6	
201	3,216	9	112	3,207	10	_	1,333	3	_	1,302	3	
103ß	(2,862)	1	113 B	(2,698)	1	-	1,294	3		1,280	1	
(103)	2,592	8	103	2,638	6		1,279	4		1,251	3	
212	2,501	3	122	2,516	5	-	1,250	4	_	1,236	2	
220	2,460	1	113	2,455	3	_	1,245	2		1,217	1	
113	2,435	1	(130 β)	(2,42 5)	1	-	1,220	2	<u> </u>	1,205	1	
221	2,354	3	221	2,2359	6		1,201	1	_	1,180	1	
004	2,310	1	004	2,305	1		1,183	5	_	1,160	1	
301	2,234	4	104	2,234	2	_	1,175	2	—	1,150	4	
310	2,202	4	130	2,198	6		1,164	- 3		1,101	3 ш	
114	2,130	3		—	-		1,154	2		1,0906	3	
004	2,098	6	123,004	2,126	6		1,146	3	—	1,071	1	
302	2,077	3	231	2,067	2	—	1,135	3	—	1,055	1	
104	2,033	4	302,104	2,036	5	-	1,125	5	_	1,044	1	
-	2,007	3	114	1,964	3	-	1,106	3		1,029	1	
-	2,005	1	(400β)	(1,917)	1		1,092	3	—	— <u>_</u>		
114	1,928	7	231	1,880	3	-	1,078	3			-	
-	1,877	2	204	1,830	1		1,060	6	_	- 1	-	
005	1,851	1	303	1,800	1	—	1,032]	—	-	-	_	
204	1,795	5	124	1,759	4		1,0375	6т		-	`	
322	1,754	5	138	1,738	2	-	1,021]	_		-		
400	1,741	2	400	1,716	-	-	1,019Ĵ	3ш	_		-	

 d_{001} , содержание воды в них не достигает максимума, колеблясь для различных образцов Na-отенита в пределах $8,48 \pm 0,04$ kX, а для Ca-аналога равняясь 8,22 kX [для метаотенита, по литературным данным (Макаров и др., 1960), C = 8,40 Å]. Размеры псевдоэлементарных ячеек Na- и Ca-разновидностей соответственно равны: a - 6,91, c - 8,54 kX; a - 6,93, c - 8,39 kX, т. е. параметр a, отражающий строение двумерного пакета, в обоих случаях практически идентичен, что обусловлено прежде всего близостью ионных радиусов Na (0,97) и Ca (0,99) при равном значении их в структуре минерала, а также характером распределения катиона в отените.

1.77

По данным Е. С. Макарова и др. (1960). 1Са распределен статистически по двукратной позиции 2 (c). Это открывает возможность для изоморфного замещения Са на 2Na, т. е. для осуществления изоморфизма с заполнением пространства без существенного изменения параметра пакета a. Различия в значениях параметра c определяются в структуре отенита в основном степенью гидратации минерала и значительно меньше у Са-разновидности. Для вывода о причинах этого в данном случае необходимо обратиться к кристаллохимическим формулам минерала.

Что касается разновидностей Na-отенита I и II, то можно отметить незначительные отклонения обр. I по характеризующим его d/n от обр. II — отклонения, связанные не с содержанием межплоскостной воды, а с другими особенностями состава.

Na-отенита II удалось выделить в чистом виде очень мало, поэтому авторы не смогли провести для него всех исследований, выполненных для отенита I. Отенит II был обезвожен на автоматическом приборе К. М. Феодотьева в температурном интервале от 20 до 1100°. Общее количество воды, которая удаляется довольно равными порциями от 60 до 340°, составляет 5,5%:

> Температура, °С..... 60—100 100—150 150—200 200—340 Потеря H₂O, %..... 1,05 1,7 1,17 1,58

Д. п. исходного образца 10,04 не изменила своего значения после удаления всей воды.

ОПРЕДЕЛЕНИЕ ВОЗРАСТА

Для определения возраста образования минералов урана было проведено небольшое количество определений отношения содержаний U^{2·4}/ U²³⁸, Io/U, Ra/U. С целью сравнения эти же определения получены для урановых черней из рудоносной песчаной толши (см. рис. 1).

Все исследуемые минералы характеризуются значительным недостатком I₀ и Ra (табл. 6). Соотношение между изотопами урана смещено в сторону избытка U²³⁴. Полученные соотношения указывают на молодой возраст исследуемых минералов. Так, возраст Na-стенита I определяется в 90—180 тыс. лет, а отенита II—4,5—22 тыс. лет, т. е. изученные Na-отениты не являются одновозрастными: возраст Na-отенита I примерно аналогичен возрасту урановых черней, концентрирующихся в нижележащей песчаной толще (см. рис. 1), Na-отенит II моложе. Возможно, с этим связано и некоторое различие в свойствах этих минералов, образование которых происходило, вероятно, также не в одинаковых условиях.

Таблица б

Минерал	U, %	Ra, e/e	$\frac{U^{234}}{U^{238}}$		$\frac{Ra}{U}$	Возраст по Іо/U (тыс. лёт)	
Na-отенит I	$\frac{44,23}{53,0}$	2,10-8	1.06 ± 0.025 1.28	0,57 0,99	0,13	~90 ~180	
Na-отенит II	$57,09 \\ 48,0$	1,96.10-9	$1,22\pm0,022$ 1,3	0,044 0,21	0,044	$\sim 4,5$ 22	
Урановые чер- ни	1,2	1,85.10-4	_	0,92	0,045	130	

Содержание радиоактивных элементов и отношения изотопов *

* Определение элементов выполнено в лаборатории В. И. Малышева.

19

2*

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали следующее:

1. Na-отенит является минералом изоструктурным с известным Саметаотенитом, однако поведение Na-отенита в процессе нагревания существенно отличается от поведения Са-отенита. Если в Са-отените с удалением воды наступает аморфизация, то для Na-отенита полная дегидратация сопровождается лишь деформацией (сжатием) структуры, сближением слоев (пакетов). По-видимому, и характер воды в них различен.

В Na-отените вода аналогична адсорбционной (межплоскостной); в Са-отените вода, вероятно, двух видов: одна — типа «кристаллизационной», выделение которой сопровождается переходом в другую кристаллическую структуру (метаотенит I и метаотенит II), и другая — условно названная нами «кристаллизационно-конституционной», удаление которой вызывает разрушение кристаллической структуры. Первая вода фиксируется повышением д. п. вещества и изменением ИКС; для второй типичны повышение д. п. и соответствующее изменение ИКС, характеризующее переход в аморфное состояние.

2. Некоторое различие в свойствах Na-отенитов, возможно, связано не с тем, что их образование было разорвано во времени, а с различными условиями образования. В процессе формирования инфильтрационных месторождений в приповерхностных условиях рудоносные растворы могли перемещаться в различных направлениях. Основная их часть (вниз по падению песчаного пласта), формируя основные рудные тела, представлена окислами урана (см. рис. 1). В пределах участков, в которых зона поверхностного окисления накладывалась на зону пластового окисления, сформированную гидрокарбонатно-натриевыми пластовыми водами, часть урана могла остаться на месте, образуя скопления фосфатных руд (Naотенит II). Na-отенит I образовался в пределах кварцевых жилообразных тел и трещин, по которым рудоносные растворы могли подниматься из нижележащего рудовмещающего песчаного горизонта в перекрывающие их глины; здесь растворенный уран осаждался также в виде фосфатов (Na-отенит I), т. е. скопления Na-отенита II являются следом расположения былой черниевой залежи, которая в процессе движения зоны окисления частично продвинулась вниз по пласту, частично же уран был зафиксирован в виде Na-отенита. Формирование Na-отенита I происходило параллельно с формированием черниевого оруденения и связано с подъемом ураноносных растворов по разрывным нарушениям (см. рис. 1) в водоупорные горизонты.

ЛИТЕРАТУРА

- Алексеева М. А., Черников А. А., Крутецкая О. В., Конь-кова Е. А. Натроотепит. Новые данные о минералах урана СССР. Сб. статей под ред. Ц. Л. Амбарцумян и В. А. Поликарповой. Изд-во АН СССР, 1958.
- Амбарцумян Ц. Л., Басалова Г. И. и др. Термические исследования
- урановых и урансодержащих минералов. Госатомиздат, 1961. Каширцева М. Ф. Минералого-геохимическая зональность инфильтрационных
- рудопроявлений урана. Сов. геол., 1964, № 10. каров Е. С., Иванов В. И. Кристаллическая структура метаотенита. Макаров Е.С., Докл. АН СССР, 1960, 132, № 3.
- Рожкова Е. В., Ершова К. С., Андрусенко Н. И. Оводевцеолитах.-Сб. «Минеральное сырье», 1961, № 6.
- Черников А.А., Крутецкая О.В., Органова Н.И. Натроотенит. Атомная энергия, 1957, № 8. Черников А.А. Об условиях образования натроотенита. Вопросы геологии урана. Приложение № 6 к журналу «Атомная энергия» за 1957 г. Щербак О.В., Карюкина В.Н. Поплавок для экспрессного определения ураны. Восов учистости и миноратов. Бора и раумисточи и 1063. № 6
- удельных весов жидкостей и минералов. Бюлл. научно-техн. инф., 1963, № 6 (50).