ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

Вып. 21

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

1972

Е. Г. ПРОЩЕНКО, А. Я. ВОЛЖЕНКОВА, А. В. БЫКОВА, Г. К. КРИВОКОНЕВА, Л. И. РЫБАКОВА

ПЕРВАЯ НАХОДКА РОУЛАНДИТА В СССР

Роуландит принадлежит к числу исключительно редких и недостаточно изученных метамиктных силикатов иттрия. Он установлен Хидденом в 1891 г. (Hidden, 1891) в альбитизированных участках гранитных пегматитов Барингер Хилл, США (Hidden, 1905; Hess, 1908; Landes, 1932). До последнего времени это была единственная находка минерала, по которой в последующие годы уточняли его состав и физические свойства (Hidden, Hillebrand, 1893; Frondel, 1961). Несмотря на то что исследовался минерал из одной коллекции, данные о его формуле и свойствах весьма противоречивы (табл. 1).

Таблица 1

Состав и свойства	Hidden, Hillebrand (1893)	Frondel (1961)	
Формула Уд. вес Показатель преломле- ния	Y ₄ Fe [Si ₂ O ₇] ₂ F ₂ 4,513 1,725	(Y, Fe, Ce) ₃ [SiO ₄] ₂ (F, OH) 4,39 1,704	

Характеристика роуландита из Барингер Хилл

Е. Г. Прощенко обнаружен роуландит на Кольском п-ове в постмагматических жильных образованиях, генетически связанных со щелочными эгирин-арфведсонитовыми гранитами.

В отличие от первой находки его в пегматитах (Hidden, 1891), роуландит установлен в минерализованной зоне дробления среди палеозойских биотитмикроклиновых гранитов. Указанная зона имеет существенно кварц-альбитцирконовый состав с разнообразными редкоземельными минералами. Четко выраженное полосчатое строение таких зон отличается последовательной сменой минерализации и характера выделений жильных минералов. В направлении от лежачего к висячему боку прослеживаются: а) кварц-альбитцирконовая подзона; б) подзона сильно дробленого охристого кварца с гнездами ураноторита, ферриторита, иттриалита, гадолинита, роуландита; в) подзона жильного сливного кварца с таленитом; г) подзона кварц-альбитового состава с фергусонитом и торитом; д) подзона кварц-альбитового состава.

Акцессорные редкоземельные минералы в зоне и в подзонах распределяются неравномерно, образуя редкие гнезда или мелкую вкрапленность. Обнаруженный минерал первоначально определен А. Я. Волженковой как зеленый иттриалит, но последующее изучение свойств и состава позволило отождествить его с роуландитом (Hidden, Hillebrand, 1893). Исследовался также образец эталонного роуландита из Барингер Хилл (шт. Техас, США), любезно присланный профессором К. Фронделом. Замеренные нами удельный вес и показатель преломления минерала соответствуют приведенным Хидденом и Хиллебрандтом (Hidden, Hillebrand, 1893).

Роуландит встречен в ассоциации с таленитом, абукумалитом, иттриалитом и гадолинитом. Он образует выделения неправильной формы с размером зерен до 4 *мм*. Цвет минерала голубовато-зеленый. Макроскопически он едва отличается от гадолинита, который имеет оливковый оттенок. Нередко зерна роуландита обладают пятнистой бурой окраской, явно приуроченной к микротрещинам. Для изучения отбирались две разности минерала: голубовато-зеленая и зеленовато-бурая, которые, как будет показано далее, вполне тождественны. Трудность заключалась в разделении роуландита и гадолинита, но благодаря тому, что последний оказался кристаллическим, удалось достаточно чисто выделить роуландит под бинокуляром в этиленгликоле. Контроль чистоты осуществлялся под бинокуляром в скрещенных николях.

Блеск роуландита стеклянный, сильный, излом раковистый, спайность отсутствует. Минерал изотропный, метамиктный. Измеренные физические свойства приведены в табл. 2.

Таблица 2

	CCCP, Ko	США, Барингер Хилл		
Свойства	I. Голубовато- зеленый	II. Зеленовато- бурый	III. Голубовато- зеленый	
Уд. вес (d) экспериментальный вычисленный	4,56 4,58	4,54 4,56	4,54 4,54	
Показатель преломления (N) экспериментальный вычисленный	1,726 1,720	1,726 1,722	1,726 1,728	
Микротвердость (H) экспериментальная (в $\kappa\Gamma/mm^2$)	-	616	612	

Физические свойства роуландита

Как видно из табл. 2, расхождения экспериментальных и теоретических значений d и N трех образцов роуландитов незначительны. Для проверки экспериментальных значений N и d была использована известная зависимость Дейла и Гладстоуна между этими величинами и удельной энергией светопреломления вещества (K): N-1 = dK (Ларсен, Берман, 1965). Опустив громоздкие вычисления значений K для всех трех образцов, заметим, что удельные энергии светопреломления K окислов редких земель для наших анализов брались согласно индивидуальному составу TR, а для американского анализа — согласно группировке TR в табл. 3.

Химические анализы двух роуландитов СССР и эталонного из США. (см. табл. 3) близки. Выявляются различия в содержаниях FeO и Y_2O_3 , и намечается обратная зависимость между ними. В нашем роуландите больше MnO; в буроватых разностях определено 1,10% H₂O. По составу TR (табл. 4) обе изученные разности едва различимы. На общем фоне комплексного состава резко выделяются повышенные концентрации Y, Dy, Ce. Для сравнения с образцом из США состав TR был пересчитан на абсолютные содержания и сгруппирован по тому же принципу, что и у Хиддена (см. табл. 3). Содержания групп La₂O₃, Y₂O₃, Ce₂O₃ оказались аналогичными.

Таблица З

			CC		США					
	I. Голубо	вато-з	еленый	II. Зелен	овато-	бурый	III. Голуб	іовато-	зеленый	
Окислы	вес. %	атомн. колич.	колич. атомов на 9 катио- нов	вес. %	атомн. колич.	колич. атомов на 9 катио- нов	вес. %	атомн. колич.	колич. атомов на 9_катио- нов	
SiO ₂	27,86	463	4,09	26,80	446	4,04	26,04	433	3,91	
TIO_2	1 43	005	0.04	1.37	007	0.05	0,39	002	0.01	
Ce ₂ O ₂	6.80	042	0.37	5.55	037	0.35	5.06	030	0.27	
$La_{2}O_{3}$	9,10	050	0,44	7,51	043	0,40	9,34	055	0,50	
Y ₂ O ₃	41,24	310	2,75	45,60	329	2,99	47,70	358	3,24	
B_2O_3	Не обн.	—	. —	0,10				_	_	
Fe_2O_3	» »	'		Не обн.	—	—	0,09	011		
FeO	7,70	107	0,95	6,30	087	0,80	4,39	061	0,55	
CaO	0,96	017	0,15	0,75	013	0,12	0,50	008	0,08	
MnO	1,70	023	0,21	2,00	028	0,25	0,67	009	0,08	
MgO	Не обн.	_	-	Не обн.	-	—	1,62	040	0,36	
Na ₂ O	-	-	-		-	-	0,28	009	_	
CO ₂		-		—	—	-	0,34	007	-	
H ₂ O-		-	-			0.55	0,24	026	_	
H ₂ O ⁺	ne oon.	000	1 77	1,10	122	0,55	2.07		1.04	
r DO	He of	200	1,77	3,87	203	1,80	3,07	203	1,04	
CVMM2	101 11			101 55	-	-	101.12	-	-	
$O = F_2$	1,42			1,63			1,63			
Сумма	99,69			99,92			99,49			

Химический состав роуландита *

Аналитик А. В. Быкова; W. F. Hillebrand, 1893]

* Пересчет на Ce₂O₃, La₂O₃, Y₂O₃ проведен на основании расшифровки TR₂O₃ рентгеноспектральным методом.

Таблица 4

Разновидность	La	Ce	Pr	Nđ	Sm	Eu	Gđ	ть	Dy	Но	Er	Tu	Yb	Lu	Y
I. Голубо- вато-зе- леный	3,7	12,0	1,3	5,4	4,2	0,4	5,0	1,7	11,0	2,8	5,5	0,7	1,8	1,1	(43,4)*
II. Зелено- вато-бу- рый	3,1	10,6	1,2	4,7	3,5	0,3	3,8	1,5	11,0	3,1	7,3	1,0	4,3	1,2	(43,4)*

Состав TR в роуландите (при TR=100%)

* Дано по разности.

Как показано в табл. 1, один и тот же анализ роуландита выражен разными формулами. Применив общеизвестные принципы пересчета анализов и группировки атомов, мы попытались привести все три анализа к одной из указанных формул (табл. 5). Очевидно, что формула Y_4 Fe[Si₂O₇]₂F₂ более соответствует реальным атомным соотношениям. Поэтому она была принята в качестве основы расчета.

Таблица 5

Атомные отношения в роуландите, сгруппированные по Хиддену и Фронделу

	Hidden, Hillebrand (1893)	Frondel (1961)
Образец	Y₄Fe[Si₂O7]₂F₂ (расчет на 5=Y+Fе)	(Y, Fe, Ce) ₃ [SiO ₄] ₂ F (pacyer Ha $3 = Y + Fe$)
I. CCCP	(TR. Th, Ca) _{3,82} (Fe, Mn) _{1,18} [Si _{2,08} O _{7,1}] ₂ F _{1,8}	(TR, Fe, Ca)s [Si1,2504,3]s F1,08
II. CCCP	$(TR, Th, Ca)_{3,94}$ (Fe, Mn) _{1,06} $[Si_{2,04}O_{7,1}]_2 F_{1,86}$	(TR, Fe, Ca \times × (Si _{1.23} O _{4.26}] ₂ F _{1.12}
III. США	(TR, Th, Ca) _{4,02} (Fe, Mn, Mg) _{0,98} × × [Si _{1,91} O _{6,88}]₂ F _{1,79}	$(TR, Fe, Ca)_{3} \times $ $\times [Si_{1,15}O_{4,12}]_{2}F_{1,08}$

При вычислении коэффициентов за исходную расчетную величину была принята общая сумма катионов, равная 9 (см. табл. 3). Ниже приведены пересчитанные формулы роуландитов:

I. (Y, Dy, Ce, Th, Ca)_{3,75}(Fe, Mn)_{1,16} [Si $_{4,09}O_{14,04}$]F_{1,77}; II. (Y, Dy,Ce, Th, Ca)_{3,91}(Fe, Mn)_{1,05} [S_{4,04}O_{14,01}]F_{1,85}·0,55 H₂O; III. (Y, Dy, Ce, Th, Ca)_{4.10}(Fe, Mn, Mg)_{0.99} [Si $_{3,91}O_{14,03}$]F_{1,84}.

Такой расчет приводит к наиболее удовлетворительному балансу валентностей. Во всех анализах фиксируются недостаток F (от 0,16 до 0,23) и дефицит одной из катионных групп. При этом наблюдается явная взаимосвязь между группами TR и Fe, заключающаяся в постоянном сохранении их суммарного значения, близкого к 5 (3,75+1,16=4,91; 3,91+1,05=4,96; 4,10+0,99=5,09), что позволяет объединить обе группы. Тода типовая формула роуландита примет вид: (Y₄Fe)₃ [Si₂O₇]₂F₂. Предполагается изоморфизм между Y⁺³ и Fe⁺² по схемам:

$$Y^{3+}O^{2-} \rightarrow Fe^{2+}F^{-}$$
 и $Y^{3+}F^{-} \rightarrow Fe^{2+}$.

Последняя подтверждается фактическими данными (рис. 1) о прямолинейной обратной зависимости между YF и Fe.

Рис. 1. Обратная зависимость между Fe и YF в роуландите

Термический анализ выполнен для кольского образца (рис. 2). Отчетливо фиксируется экзотермический эффект при 850° С, связанный с переходом роуландита в кристаллическое состояние. Значительно слабее выражен эндотермический эффект при 1000° С. По-видимому, последний характеризует удаление фтора из минерала. Дифференциальная кривая иттриалита отличается широким эндотермическим эффектом в области 100—300° С и

15

Таблица б

Межплоскостные расстояния продуктов прокаливания роуландита с Кольского п-ова (II), из Барингер Хилл (III) и иттриалита (IV)

	80	0°C		900-1000°C			1050°C				1000°C		
	11	I	11	1	I		111]	I	:	111	I	v
I	d/n	I	d/n	1	d/n	I	d/n	Ι	d/n	1	d/n	1	d/n
-	-	_	-	6 21	6,68 5,50	-		9 10	6,62 5,76	10 10	6,65 5,87	10 10	6,63 5,77
	1 -	-	4 00	6	5,23	50	4.01		_		4 94	-	
21	4,94		4,09	12m	4,09	160	4,91	17	4.34	30	4,94	94	1 35
			_	16	4.18	14	4.23	10	4.195	22	4.18	12	4 20
11k	4,04			8	4,05	6^k	4,02	5^k	4,07				
11	3,822	—	_	8	3,860	16	3,908	_			—	_	
	-	—	—	27	3,785	12 ^x	3,795	—					-
-	-	—	—	—		—		12	3,643	—	—	-	-
14	3,613	25	3,591	16	3,618	46rx	3,603		—	-		—	
26	3,536	40	3,512	21	3,508	37	3,528	-	2 4 4 0		—	_	
-		_	-	—		_	—		3,449	_		9	3,45
					2 296	_		0	0,000				-
8	3 313	7	3 285	21	3,311	30ri	3 306	48	3.317	43	3 306	32	3 39
	0,010	· _		22	3.265	18 ^x	3.250	3	3,274				0,02
_		_		21	3,157	_		11	3,126				
	_		-	100	3,098	50 ^x	3,093	_		_	—	_	
100	3,070	100	3,055	_	—	100	3,065	5 ⁰	3,062	150	3,064	_	_
_	-	-		357	3,016	35 ⁱ	3,005	100	3,013	100	3,001	100	3,01
—	—		—			-	—	—	—	6	2,963	—	-
15	2,909	23	2,900	204	2,906	50ri	2,903	42	2,909	58	2,902	43	2,91
10	2,853	7	2,832	161	2,864	15ri	2,858	20	2,865	22	2,849	24	2,86
48	2,789	29ш	2,793	56*1	2 816	41 <i>rt</i>	2,788	24	2,800	42	2,785	28	2,81
	0.700	-		19 16	2,750	-		5 10	2,703		2 600	9	2,76
22 91	2,728	13	9 710	10	2,719	2011	9 709	19	2,710	42	2,099	20	2,72
170	2,703		2,710			100	2,702	6	2,649		_	4	2 65
<u> </u>	2,040					2211	2,600	_				_	2,00
17	2.614	17	2.605	8	2,609			5	2,603	7	2,597		
			_	7	2,561	_		10	2,555	23	2,531	8	2.56
21	2,536	26	2,521	8	2,518	38	2,536	_			—		
14	2,464	25	2,440	13	2,413	30	2,452	-	-	10	2,439	—	—
	—		—	11	2,338		—	6	2,369	13	2,314	5	2,36
		—	—	5	2,300	15	2,296	4	2,283	-			—
-	-	_		0 44	2,268	10.	-		9.935	-	_		
-	—	-	—	44 0	2,238	19x	2,242	4	2,200	15	2 202	12	2,22
		_	_	19	2,205	131	2 197	14	2,195	10	2,202	15	2,19
		18	2116	22	2,178	15	2,107	10	2,144	10	2,134	10	2 15
9ш	2,130	12	2,100	22	2,106	15	2,128	18	2,109	13	2.105	14	2,10
28ш	2.084	25	2,078	7	2,083	30	2,095	9	2,070	_		_	
-		15	2,065	6	2,063	27	2,075	9	2,059	-		5	2,07
9	2,027	4	2,030	7	2,033	6	2,050	5	2,027			_	
	—		-	11	1,982	10	1,995	—	_	-	-	—	-
9	1,961	14	1,952	6	1,966	10	1,965		-		-		
	_	-	-		-	-	_	-	-	-	-	5	1,934
19	1,920	18	1,908	8	1,919	25	1,915	5	1,908	12	1,909	5	1,923

123

таолица о токончан	ние)
--------------------	------

	800°C 900-1000°C								103	1000°C			
	11	I	II		II •	I	11		III III		III	IV	
I	d/n	Ι	d/n	I	d/n	Ι	d/n	Ι	d/n	I	d/n	I	d/n
_	_	_		8	1,894	_	_	5	1,892		_	5	1,890
100	1,870	_		14	1,875	150	1,862		_		_		_
_	_		_	6	1,861			8	1,866	10	1,864	6	1,860
	—	_		10	1,845		_	8	1,844	7	1,841	_	-
_			—	11	1,823	10x	1,823		_	_			
21	1,813	24	1,799	11	1,803	28	1,805	28	1,813	18	1,805	22	1,814
		_		6	1,790	_		7	1,786	13	1,783	_	_
18	1,771	16	1,757	6	1,774	27	1,763	8	1,771			9	1,776
—				—	_		—	7	1,757	20	1,755	4	1,757
	—	—		10	1,732	_	-	7	1,731	-	-	-	-
										22	1,723	4	1,721
19	1,728	21	1,712	18	1,712	40ш	1,722	7	1,721		_	-	
_	_		—	7	1,689	—	—	8	1,697			4	1,699
9	1,682	6	1,678	14	1,673	6	1,680	6	1,685				
		—	—	8	1,664	_	-	6	1,660	—	—		-
	—	6	1,628	10	1,636	13	1,640	6	1,643	7	1,640	5	1,638
	_		—	6	1,621	13	1,622	10	1,625	7	1,625	8	1,627
—	—	_		5	1,606	70	1,601	10	1,604	—		8	1,606
					-			10	1,597	13	1,597	8	1,599
	—	—	-	6	1,584	8	1,585	4	1,577				-
_	—	-		10	1,570	8	1,565	—	—	—	—	—	-
	—	—	—	6	1,553	10	1,556	2	1,548		-	4	1,555
9	1,538	—	—	5	1,528	11	1,538	4	1,534	—	_	-	-
-			—	5	1,515	11	1,520	—	-			-	-
	—	—		5	1,507	8	1,499	5	1,507	8	1,505	4	1,508
	—	—		—				5	1,491		_	-	-
6	1,476	—		6	1,478	6	1,475	6	1,465	—	-		-
14	1,460	—	—	10	1,455	14	1,456	—	-	13	1,456	6	1,457
12	1,427			4	1,434	7	1,422	—		-		—	-
11	1,394		—	10	1,414	10	1,393	—	—	-	—	-	-
	<u> </u>			Бше	8 ли-	Fure	4						

Еще 18 ли-	Еще 4 ли-
ний до зна-	нии до зна-
чения d=	чения d=
=1,061	=1,262

Примечание. Съемка проводилась в камере РКУ-114,6 мм на Fe-излучении. Пленки промерялись линейкой с ценой деления 0,2 мм. Интенсивность оценивалась при помощи марок почернения с шагом $\frac{4}{\sqrt{2}}$ и нормировались по 100-балльной шкале. Буквами k, o, r, x, i обозначены линии, соответствующие сильным отражениям примесных фаз: k — кристобалит; o — окись иттрия; r — «роуландия»; x — фаза; i — иттриалит.

четким экзотермическим пиком при 940° С. Тем самым подчеркивается индивидуальность кривой нагревания роуландита.

После отжига при 800° С минерал остается прозрачным, но изменяет окраску до красно-коричневой и становится неоднородным. На многих зернах появляются выделения кремового цвета с жирным блеском и выделения серовато-белого цвета. Рентгенометрически установлено, что кремовое вещество обладает структурой абукумалита, а серовато-белое представляет собой окись иттрия. Обе фазы наблюдаются во всем интервале прокаливания вплоть до 1050° С. После 920° С роуландит становится непрозрачным, темно-коричневым. Под микроскопом красно-бурые зерна анизотропны. Пока-

25

затели преломления повышаются: $Ng \approx 1,830$, $Np \approx 1,823$. В естественном состоянии роуландит рентгеноаморфен.

Постепенное и одновременное нагревание в муфельной печи техасского и кольского роуландитов (при 800, 900, 920, 950° С в течение 5 час и при 1000, 1050° С в течение 1 час) позволяет провести сравнение продуктов прокаливания. Четкие дебаеграммы появляются при 800° С (табл. 6). При этой температуре оба роуландита обнаруживают одинаковую кристаллическую структуру. Полученные рентгенограммы индивидуализированы и не отождествляются с рентгенограммами других известных минералов, что приводит нас к мысли о принадлежности этой фазы к роуландиту. Однако

Рис. 2. Дифференциальные кривые нагревания роуландита (верхняя) и иттриалита (нижняя)

пока нет доказательств того, что эту структуру минерал имел и до метамиктизации, поэтому название фазы «роуландит» берется в кавычки.

При дальнейшем прокаливании минерал претерпевает фазовые превращения. В интервале температур 900—1000° С продукты прокаливания обоих роуландитов существенно различаются по количественному соотношению вновь появляющихся кристаллических фаз. Если в кольском роуландите основной является не расшифрованная пока *x*-фаза, то в техасском образце главной остается фаза, появившаяся при 800° С, а *x*-фаза наблюдается в качестве примеси. В обоих образцах присутствуют высокотемпературная фа-

Таблица 7

Состояние	Кристаллическая фаза роуландита									
°С)	CCCP	США								
Исходное	Метамиктный	Метамиктный								
800	«Роуландит» Окись иттрия Кристобалит	«Роуландит»								
900—1000	х Высокотемпературный ит- триалит Окись иттрия	«Роуландит» х Высокотемпературный иттриа-								
	Кристобалит	Окись иттрия Кристобалит								
1050	Высокотемпературный ит- триалит Окись иттрия Кристобалит	Высокотемпературный иттриа- лит Окись иттрия Кристобалит								

Фазовые превращения роуландита *

• Кроме указанных фаз в продуктах прокаливания роуландита постоянно наблюдаются выделения абукумалита. за иттриалита¹, а также окись иттрия и кристобалит. Полученная нами дебаеграмма техасского роуландита, прокаленного при 900° С, идентична дебаеграмме, полученной Фронделом (Frondel, 1961) на том же материале, но прокаленном в токе азота.

После прокаливания свыше 1000° С оба образца дают идентичные дифракционные картины, которые полностью соответствуют дифракционной картине иттриалита, прокаленного при 1000° С. Примесь составляют две фазы: окись иттрия и кристобалит. Переход роуландита в высокотемп^ратурную фазу иттриалита, очевидно, возможен при удалении фтора из структуры роуландита, ч о согласуется с кривой нагревания.

Таким образом, фазовым анализом установлено, что продукт прокаливания роуландита представляет собой многофазное вещество. Фазовые превращения показаны в табл. 7.

Выводы

1. Описанный образец роуландита с Кольского п-ова является второй находкой этого редкого минерала. Он установлен в кварц-альбитовых постмагматических жильных образованиях, генетически связанных со щелочными эгирин-арфведсонитовыми гранитами, в ассоциации с цирконом, абукумалитом, ферриторитом, фергусонитом, иттриалитом, таленитом, гадолинитом, пирохлором.

Известный до сих пор роуландит из гранитных пегматитов Барингер Хилл (США) также приурочен к участкам интенсивной альбитизации и характеризуется той же ассоциацией минералов.

2. Установленный нами на Кольском п-ове роуландит по составу, физическим и оптическим свойствам, а также по геологическим условиям нахождения и минеральным ассоциациям аналогичен роуландиту из Барингер Хилл.

3. Рентгенометрические исследования показывают, что кольский и техасский образцы представляют один минеральный вид.

4. Различия фазовых превращений в процессе прокаливания образцов, по-видимому, следует связывать с некоторым отклонением состава кольского роуландита.

Образец кольского роуландита передан в Минералогический музей Института минералогии, геохимии и кристаллохимии редких элементов и в Минералогический музей им. А. Е. Ферсмана АН СССР.

ЛИТЕРАТУРА

Ларсен Е., Берман Г. Определение прозрачных минералов под микроскопом. Изд-во «Недра», 1965. *Frondel C.* Two yttrium minerals: spencite and rowlandite. — Canad. Min., 1961, **6**, pt 5.

Frondel C. Two yttrium minerals: spencite and rowlandite. — Canad. Min., 1961, 6, pt 5. Hess F. L. Minerals of the rare-earth metals at Baringer-Hill, Llano County. Texas. — Geol. Surv. Bull., 1908, № 340.

Geol. Surv. Bull., 1908, № 340. Hidden W. E. Preliminary Notice of a New Yttrium Silicate. — Amer. J. Sci., 1891, 42. Hidden W. E. Some results of late research in Llano County. Texas. — Amer. J. Sci., 4-th ser., 1905, 19.

4-th ser., 1905, 19. Hidden W. E., Hillebrand W. F. Description of Rowlandite. — Amer. J. Sci., 1893, 46. Landes K. The Baringer Hill, Texas, pegmatite. — Amer. Min., 1932, 17, $N \ge 8$.

¹ Высокотемпературной фазой иттриалита мы называем фазу, образующуюся после прокаливания природного иттриалита при 1000—1100° С.