Д.О. ОНТОЕВ, А.В. ДРУЖИНИН, А.И. ЦЕПИН, Л.Н. ВЯЛЬСОВ, Г.В. БАСОВА МИНЕРАЛЫ РЯДА ГРИНОКИТ-ВЮРТЦИТ КТИ-ТЕБЕРДИНСКОГО МЕСТОРОЖДЕНИЯ

При детальном минераграфическом изучении сульфидно-шеелитовых руд Кти-Тебердинского месторождения (Северный Кавказ) обнаружены минералы ряда гринокитвюртцит в арсенопирит-пирротин-галенитовых агрегатах, образующих гнезда, линзы, прожилки и неправильные обособления в кварц-полевоншат-шеелитовых жилах. Минералы тесно ассоциируют с галенитом, халькопиритом, пирротином, самородным висмутом, сульфовисмутитами свинца и серебра, сульфотеллуридами висмута и гесситом, образовавшимися в позднюю пирротин-галенитовую стадию минерализации [1].

Наблюдается две генерации минералов рассматриваемого ряда. Первая генерация минералов представлена относительно крупными (до 0,2-0,5 мм) зернами изометрической и неправильной формы, а также их агрегатами в срастании с халькопиритом, пирротином и пиритом. Минералы этой генерации корродируются и замещаются галенитом и образовались несколько раньше его.

Рис. 1. Мелкие изометричные выделения гринокита II генерации (темное-гр) в ассоциации с самородным висмутом (белое) и галенитом (светло-серое) среди корродированного пирротина (серое)

Справа (черное) – кварц. Полир. шлиф 20-6, п-4, увел. 320

Рис. 2. Спектры отражения цинкового гринокита I генерации (1), гринокита (2) (по данным Л.Н. Вяльсова, 1973 г.) и кадмийсодержащего сфалерита (3)¹

Вторая генерация минералов — размерами от тысячных до первых сотых долей миллиметра, которые часто встречаются в галените, особенно в тех местах, где галенит корродирует и замещает пирротин. Весьма характерна тесная ассоциация этой разновидности с самородным висмутом и сульфотеллуридами висмута, образующими в галените мелкие неправильные и часто прожилкообразные выделения. Иногда заметно, что вокрут зерен самородного висмута минералы второй генерации образуют как бы "рой" мелких округлых и изометрических зерен (рис. 1). Нередко

¹ Спектры отражения этого минерала измерены на образцах В.А. Коваленкера.

№ п/п	Гринокит		Цинковь	ий гринокит	Вюртцит		
	Ι	d_{α}/n	I	d_{α}/n	Ι	d_{α}/n	
1	1	1	2	(3,817)			
2			1	(3,591)			
3	6	3,59	10	3,451			
4			1	(3,342)			
5	7	3,36	10	3,267	10	3,35	
6			1	3,152	3	3,16	
7	10	3,18	10	3,052	5	2,96	
8			1	(2,968)			
9			1	2,825			
10	3	2,45	3	2,372	7	2,30	
11			2	(2,206)			
12			2	2,098			
13	7	2,07	5	1,992	7	1,992	
14			1	1,946			
15	6	1,899	4	1,833			
16	1	1,791	1	1,788	5	1,784	
17	5	1,759					
18	1	1,728					
19			5	1,699			
20			1	1,662	5	1,650	
21	4	1,399	· 2	1,349	2	1,311	
22	4	1,256	1	1,212	-	_	
23	2	1,184	2	1,150	2	1,182	
24	3	1,158			•		
25			2	1,117	2	1,086	

Таблица 1 Дебаеграмма цинкового гринокита Кти-Тебердинского месторождения и эталонных гринокита и вюртцита по данным [3]

совместно с висмутом он выделяется вдоль трещин в галените. Несколько повышенное содержание кадмия в галените (до 0,02-0,03%) обусловлено именно такими включениями мелких зерен гринокита в галените. Эта генерация минералов образовалась позднее галенита.

В отраженном свете обе генерации минералов обладают серым цветом (сфалеритоподобным), слабо анизотропны без заметных внутренних рефлексов; двуотражение не заметно. Микротвердость минерала первой генерации $H_{\rm cp}$ 310 кг/мм² при нагрузке 25 г.

Результаты определения дисперсии K первой генерации минералов показаны на рис. 2 (кривая 1); там же для сравнения приведены значения для гринокита, по данным Л.Н. Вяльсова [2], и кадмийсодержащего сфалерита C = 9,2%. Как видно из рис. 2, величины R изученного нами гринокита заметно ниже таковых эталонного гринокита (кривая 2), что связано, как будет показано ниже, с наличием в составе минерала заметного количества цинка. Вместе с тем коэффициенты отражения минерала выше R кадмийсодержащего сфалерита (кривая 3).

Изоморфное вхождение цинка в гринокит обусловливает занижение коэффициентов отражения, особенно в красной части спектра до 2 + 3% абс. Исследование оптических свойств гринокита и цинксодержащей разности в иммерсии показало, что влияние абсорбции весьма незначительно и коэффициенты отражения в иммерсии совпадают с рассчитанными из уравнения Френеля. В качестве исходных данных для вычислений им использовались величины R. Вычисленный показатель преломления ($\lambda = 580$ нм) гринокита равен 2,61, с увеличением содержания цинка до 20% показатель преломления снижается примерно до 2,47. В связи с этим тщательное исследование оптических свойств позволяет однозначно идентифицировать гринокит и цинксодержащий гринокит от сфалерита, показатель преломления которого равен 2,4-2,42. У железосодержащего сфалерита показатель преломления близок к 2,47,

153

Рис. 3. Растровая картина распределения элементов в мелких выделениях гринокита II генерации и ассоциированных с ними минералах

a - в поглощенных электронах (200 × 200 мк) : 1 – гринокит; 2 – сульфотеллурид висмута; 3 – самородный висмут; 4 – галенит; 5 – гессит; 6 – пирротин; б-в – распределение элементов : б – Сd; в – Те; e – Вi; ∂ – S; e – Аg; ж – Рb

но характер дисперсии *R* в синей части (480 им) спектра несколько иной. Несколько большее затруднение возникает при идентификации цинкового гринокита от кадмийсодержащего сфалерита. В этом случае необходимо использовать данные рентгеноструктурного анализа.

Дебаеграмма первой генерации минерала (Fe-излучение, = 0,2 мм) приведена в табл. 1. Для с внения даны порошкограммы эталонных гринокита и вюртцита по Бери и др. [3]. Из таблицы видно, что основные отражения изученного минерала-3,45 (10), 3,267 (10) и 3,052 (10), а также его второстепенные линии – 2,272 (3), 1,192 (5) и 1,833 (4) соответствуют таковым эталонного гринокита, хотя отдельные линии в последнем имеют среднюю интенсивность (6–3,59; 7–3,36). Вместе с тем дебаеграмма эталонного вюртцита заметно отличается от порошкограммы нашего минерала прежде всего отсутствием наиболее интенсивного отражения 3,451 (10), а другая характерная линия 3,052 (10) проявлена в виде средней интенсивности (5–2,96).

Некоторые отражения вюрцита (7-2,30; 5-1,484) в нашем минерале фиксируются в виде слабых линий. В целом дебаеграмма изученного минерала отвечает промежуточному члену ряда гринокит-вюртцит.

На рис. 3 и 4 приведены данные площадного сканирования описанных выше двух генераций минералов. В первой из них наблюдаются очень мелкие округлые и изометрические зерна гринокита II генерации (рис. 3, *a*) в тесном срастании с самородным висмутом, сульфотеллуридом висмута, галенитом и гесситом; этим зернам соответствуют участки максимальной концентрации кадмия (рис. 3, *б*). Данные

ж

Рис. 4. Растровая картина (200 × 200 мк) распределения элементов

a - в поглощенных электронах: I - кадмиевый вюртцит I генерации; <math>2 - цинковый гринокит I генерации; $<math>3 - залькопирит; 4 - сидерит (вверху справа); <math>\delta - m - p$ распределение элементов: $\delta - Cd; a - Zn; a - Fe; \partial - Cu;$ <math>e - S; m - Pb

сканирования I генерации минерала показывают значительную концентрацию цинка в составе гринокита (рис. 4, δ) и срастание его с кадмиевым вюртцитом (рис. 4, β), халькопиритом и галенитом, что подтверждают данные микроскопического изучения.

Результаты микрозондового анализа минералов приведены в табл. 2. Данные пересчета анализов дают следующие кристаллохимические формулы:

- 1. (Cd_{1,0}Fe_{0,03}Mn_{0,02}Pb_{0,01})_{1,06}S_{0,95} гринокит.
- 2. (Сd_{0.76}Zn_{0.17}Fe_{0.06}Mn_{0.03})_{1.02}S_{0.96} шинксодержащий гринокит.
- 3. (Сd_{0,51}Zn_{0,41}Fe_{0,09}Mn_{0,03})_{1,04}S_{0,96} цинковый гринокит.
- 4. (Zn_{0,60}Cd_{0,25}Fe_{0,12}Mn_{0,01})_{0,98}S_{0,98} кадмиевый вюрцит.

Таким образом, по соотношению концентрации кадмия и цинка изученные минералы, относящиеся к второй генерации, представлены почти бесцинковым гринокитом и цинксодержащей его разностью (до 8–9% Zn), а к первой — цинковым гринокитом в срастании с кадмиевым вюртцитом.

Приведенные данные показывают, что в процессе отложения сульфидов в течение пирротин-галенитовой стадии минерализации намечается эволюция во времени состава минералов от кадмиевого вюртцита и цинкового гринокита в сторону уменьшения роли цинка и возрастания роли кадмия с образованием бесцинкового гринокита. Кадмий обладает более основным свойством, чем цинк. Возрастание роли кадмия к концу сульфидного процесса указывает на увеличение щелочности растворов, что подтверждается тесным парагенезисом гринокита с сульфотеллуридами висмута и самородным висмутом, из которых последний образуется в щелочных условиях при $pH \ge 8$ [9].

Таблица 2

Результаты микрорентгеноспектрального анализа минералов ряда гринокит-вюрт	цит
Кти-Тебердинского месторождения	

Элементы			2					
	Bec. %	Пересчет на 100%	Атом. кол-ва	Форм. един.	Bec. %			
					a	б	Среднее	
Cd	75,0	75,60	0,6726	1,00	65,58	62,76	64,17	
Zn	0,05	0,05	0,0003	_	8,30	9,22	8,76	
Fe	1,09	1,10	0,0198	0,03	2,50	2,53	2,52	
Mn	0,71	0,72	0,0138	0,02	1,01	1,09	1,05	
Cu	0,04	0,04	0,0006	-	-	0,52	0,26	
РЪ	2,00	2,04	0,0098	0,01	0,67	0,31	0,49	
S	20,28	20,45	0,6373	0,95	22,48	22,32	22,80	
Сумма	99,22	100,0	1,3444		101,03	98,75	100,05	
	$K = \frac{1.3444}{2} = 0,6722$				$K = \frac{1.4877}{2} = 0,7438$			

Таблица 2 (окончание)

Элементы	2		3			4		
	Атом. кол-во	Форм. един.	Bec. %	Атом. кол-ва	Форм. един.	Bec. %	Атом. кол-ва	Форм. един.
Cd	0,5709	0,76	47.13	0,4193	0.51	28,58	0,2543	0,25
Zn	0,1340	0,17	22,08	0,3378	0.41	35,54	0,5437	0,60
Fe	0,0453	0,06	3,98	0,0713	0.09	6,10	0,1092	0,12
Min	0,0202	0,03	1,17	0,0214	0,03	0,58	0,0105	0,01
Cu	0,0041	-	0,09	0,0014	_	0,18	0,0028	-
Ph	0,0021	-	0,50	0,0024	_	0,16	0,0008	-
S	0,7111	0,96	25,06	0,7815	0,96	28,52	0,8895	0,98
Сумма	1,4877		100,02	1,6351		99,66	1,8107	24
			$K = \frac{1.6}{2}$	$\frac{351}{2} = 0.81$	75	К	$=\frac{1,8107}{2}=$	= 0,9053

Примечания: 1. Мелкие изометрические зерна гринокита (II генерация); шл. 20–6. 2. Цинксодержащий гринокит; т; шл. 20–6; *а*-фаза 1; *б*-фаза 2 (II генерация). 3. Цинковый гринокит (I генерация); шл. 20–6. 4. Кадмиевый вюрцит; шл. 20–6.

Микрорентгеноспектральный анализ минералов выполнен на микроанализаторе $MS - \phi$ ирмы "Сатеса". Условия измерения: рабочее напряжение – 20 кВ., ток образца 50 нА, размер зонда 1,5–2 мкм. Эталонами сравнения служили: на S, Cd-CdS; Pb-PbS; Fe-FeS₂; Zn, Mn и Cu -соответственно чистые металлы Zn, Mn, Cu. Ввиду недостаточно хорошей проводимости минералов ряда ZnS-CdS для достижения проводимости образцы напылялись в вакууме тонкой (300– 500 Å) пленкой углерода. Измеренные относительные интенсивности пересчитывались в концентрации на ЗBM БЭМС-6 по оригинальной программе, составленной сотрудниками рентгеноспектральной лаборатории ИГЕМ. При этом поправка на торможение электронов рассчитывалась по Бете [4]; поправка на обратное рассеяние электронов и непрерывную флюоресценцию – по Шпрингеру [5]; на поглощение – по Филиберу [6] с μ/ρ – по Хейнриху [7]; на характеристичную флюоресценцию – по Кастену [8].

Выводы

1. В рудах Кти-Тебердинского сульфидно-шеелитового месторождения установлены следующие разновидности минералов ряда гринокит—вюртцит: гринокит, цинксодержащий гринокит, цинковый гринокит и кадмиевый вюртцит.

2. Образование указанных минералов происходило в тесной ассоциации с галенитом, халькопиритом, пирротином, самородным висмутом, сульфовисмутитами свинца и серебра и сложными сульфотеллуридами висмута в пирротин-галенитовую

P

стадию минерализации. Намечается следующая последовательность отложения кадмиевых минералов: кадмиевый вюртцит + цинковый гринокит → цинкосодержащий гринокит → гринокит (бесцинковый), — указывающая на возрастание щелочности растворов к концу стадий минерализации.

ЛИТЕРАТУРА

- А.В. Дружинин, Д.О. Онтоев, А.В. Игнатов, Е.М. Соколов, А.И. Цепин. Стадийность и минеральные ассоциации сульфидно-шеелитового месторождения Кти-Теберда (Сев. Кавказ). – (Геология рудных месторожд., 1975, № 5).
- 2. Л.Н. Вяльсов. Спектры отражения рудных минералов. М.: Наука, 1973.
- 3. Z.G. Berry, R.M. Thomson. X-ray Pouder Data of ore minerals the Peacock Atlas. N.Y., 1962.
- 4. H.A. Bethe. Ann. Phys. Lpz. 5, 325, 1930.
- G. Springer. Der Berechnung von Korrekturen für die quantitative Elektronenstrahl – Mikroanalyse. – Fortschr. Miner., 1967, vol. 45. N 1.
- J. Philibert. L'analyse quantitative an microanalyse par Sonde Electronique metaux, corrosion industries. 1964, vol. 34, N 465, 466, 469.
 K.F.J. Heinrich. X-ray absorption uncertaintion.
- K.F.J. Heinrich. X-ray absorption uncertainty, The Electron Microprobe, 296, John Willey, N.Y., 1966.
- R. Castaing. Application des Sondes electroniques d'une methode d'analyse ponctuelle chimique et Cristallographique. - Oft. Nat. d'et., Rech. Aerohaut., Publ. N 0,55, 1952.
 Г.Р. Колонин, Н.А. Ткаченко. Экспери-
- Г.Р. Колонин, Н.А. Ткаченко. Экспериментальное изучение устойчивости висмутина и металлического висмута в гидротермальных условиях. – В кн.: Экспериментальное исследование по минералогии. Новосибирск: Наука, 1972.