Л. И. БОЧЕК, Н. И. ЕРЕМИН, В. М. ОКРУГИН

СТИБИОПИРСЕИТ В РУДАХ СТРЕЖАНСКОГО КОЛЧЕДАННО-ПОЛИМЕТАЛЛИЧЕСКОГО МЕСТОРОЖДЕНИЯ (Рудный Алтай)

При изучении руд Стрежанского колчеданно-полиметаллического месторождения, расположенного на северо-востоке Лениногорского рудного района (Рудный Алтай), нами в 1971 г. был установлен минерал, изучение которого на микрозонде JXA-5 не привело к его однозначной идентификации (Еремин и др., 1971). Он был предварительно отнесен по полученному химическому составу к минералам пирсеит-стибиопирсеитовой или полибазит-арсенополибазитовой серии (табл. 1). Это связано с тем, что знание одного только состава минералов этих серий, как показали последние работы ряда исследователей, не позволяет проводить их точную идентификацию (Peacock, Berry, 1947; Frondel, 1963; Генкин, Добровольская, 1965; Еремин и др., 1971). Рамдор (1962) допускает существование неограниченного ряда твердых растворов, конечными членами которого являются пирсеит (Ag₁₆As₂S₁₄) и полибазит (Ag₁₆Sb₂S₁₄), при постоянном замещении серебра медью до 30%. В этом ряду, указывает он, наименее изучены члены, содержащие от 40 до 4% полибазитовой молекулы (описываемый минерал содержит 26% полибазитовой молекулы).

Пикок и Берри (Peacock, Berry, 1947) при рентгеновском изучении кристаллов пирсеита и полибазита пришли к выводу, что эти минералы не являются изоструктурными и полибазит отличается от пирсеита (табл. 2) удвоенным размером элементарной ячейки. Фрондель (Frondel, 1963), анализируя рентгенометрические данные пирсеита и полибазита с известным химическим составом показал, что эти минералы в действительности являются членами двух различных изодиоморфных серий твердых растворов: пирсеит-стибиопирсеитовый (Ag,Cu) 16 (As,Sb) 2S11 и полибазитарсенополибазитовой (Ag,Cu)₁₆(Sb,As)₂S₁₁. Эти серии аналогичны сериям энаргит-стибиоэнаргитовой $Cu_{a}(As,Sb)S_{4}$ люцонит-фаматинитовой И Си₃(Sb,As)S₄, для которых, по-видимому, характерны полные взаимозамещения между сурьмой и мышьяком (Frondel, 1963). Следовательно, однозначная идентификация минералов этих серий возможна только после рентгенометрического изучения. Фрондель указывает на (табл. 2) отличия этих минералов: 1) отсутствие у пирсеита интенсивного и четкого отражения {3146}, {3254}, характерного для полибазита; 2) близкую интенсивность отражений 2244 и 4044 у полибазита; 3) слабую интенсивность отражения 1122 по сравнению с 2022 у пирсеита. Работами Халла (Hall, 1967), синтезировавшего минералы названных серий, подтверждены выводы Фронделя.

Минерал присутствует исключительно в сульфидно-кварцевых жилах (скв. 153, глубина 43,60 м, штольня, отметка 374 м), секущих все известные на месторождении породы и руды, и, возможно, обязанных своим происхождением проявлению этапа регенерации. Минеральная ассоциация представлена цинксодержащим теннантитом, пиритом, практически безжелезистым сфалеритом, халькопиритом, самородным серебром, гесситом, галенитом, кварцем с отдельными гнездами магнезиального хлорита.

Температурные условия образования ассоциации, по данным гомогенизации газово-жидких включений в кварце, декрепитации блеклой руды и пирита, оцениваются величинами порядка 310-240°. Стибиопирсеит

7.

рнокри-

		(одержание	элементов	. %				
Месторождение	Cu	Cu Ag As Sb S E		Способ анализа	Формула	Автор			
Сонора	8,90	62,54	1,43	9,65	17,62	100,19	-	-	Рамдор, 1962; Fron- del, 1963
Стрежанское	18,00	60,70	6,00	1,90	16,00	102,6	Зонд ЈХА-5	(Ag _{10,66} , Cu _{5,34}) _{16,0} . · (As _{1,50} , Sb _{0,31}) _{1,81} S _{11,0}	-
Сокольное	10,00	10,00	5,00	2,00	-	-	Приближ. полук. спектр.	-	Генкин, Доброволь- ская, 1965
Миргалимсай	6,0-7,0	70-80	4-5	-	10-13	-	MAP-1	-	Качаловская; Тро- нева, 1964
Миргалимсай	13,50	56,60	10,00	-	13,00	99,5	JXA-3	(Ag, Cu) _{14,02} As ₂ S _{8,4}	Халтаев, Слюсарев, 1969
Руен	7,95	74,25	5,22	-	12,50	100	JXA-3	(Ag _{12,5} , Cu _{3,5}) _{16,0} As _{1,97} S _{11,0}	Мънков, 1971
Теоретический состав	4,29	72,4	6,92	_	16,30	100	-	(Ag, Cu) 16As ₂ S ₁₁	Рамдор, 1962

10

Химический состав минералов пирсеит-стибиопирсеитовой серии из различных месторождений мира

Таблица 1

а — в отраженном свете; увел. 130 (1 — стибиопирсеитв поле теннантита, содержащего тонкие выделения галенита); б-к – на экране катодно-лучевой трубки микроанализатора JXA-5; увел. 300; б — рельеф зерна в поле-обратно рассеянных электронов; в — к — состав зерна в поле рентгеновских лучей; е — SK_a; ж — CuK_a; з — SbL_a; $u - AgL_{a1}$; $\kappa - AsL_{a1}$; z, $\partial - coothetetetheo coc$ тав и рельеф зерна, расположенного на контакте теннантита и галенита

образует ксеноморфные включения в теннантите размером до 0,100-0,150 мм (рис. 1, а-в) или своеобразные выделения в виде прерывистых кайм на контактах теннантита и галенита (рис. 1, e, ∂).

Морфологической особенностью минерала является наличие характерных трещин, особенно четко проявленных в каймах (рис. 1, г, д). При изучении полированных шлифов в отраженном свете минерал имеет серовато-белый цвет со слабым коричневато-сиреневым оттенком, рельеф меньший, чем у блеклой руды, но более высокий по сравнению с галенитом. Отражательная способность заметно ниже, чем у галенита, и близка к блеклой руде. Двуотражение заметное, анизотропия ясная, с цветными

Рис. 2. Спектры отражения минералов пирсеит-стибиопирсеитовой серии твердых растворов

1 — ФМЭ-1; литературные данные: 2 — Халтаев, Слюсарев (1969); 3 — Качаловская, Тронева (1964); 4 — Генкин, Добровольская (1965); 5 — Gray, Millan (1962); 6 — Мънков (1971)

эффектами в розовато-зеленых тонах, усиливающимися в иммерсии до коричневато-сиреневых.

Минерал не реагирует на действие FeCl₃, KOH, HNO₃ (1:1), HCl (1:1), но чернеет от KCN. По своим оптическим свойствам очень близок к пирсенту, установленному впервые в СССР на Сокольном месторождении А. Д. Генкиным (1965). Химический состав и формула минерала приведены в табл. 1. Распределение основных химических элементов в зерне в поле рентгеновских лучей на экране катодно-лучевой трубки микроанализатора JXA-5 дано на рис. 1, *в. е. е. – к.* Исследованиями на лазерном микроанализаторе LMA-1 в минерале установлено присутствие следов следующих элементов: Со, Cd, Bi, Zn, Pb, Mn. Отнесение минерала к стибионир-

Таблица 2

Рентгеновские характеристики	для пирсеит-стибиопирсеитовой
и полибазит-арсенов	полибазитовой серий
(Рамдор, 1962; Frondel, 1963;	Генкин. Побровольская, 1965)

Интервалы меж расстояний (А) н членов серий	плоскостных (райних	Относи интенси	Гельйыё Ивности	Полибазит- арсенополиба- зит	Пирсеит-сти- биопирсеит	
Полибазит Пирсеит		Полибазит Пирсеит		hkil	hkil	
3,18 2,99	3,05 2,95	50 100	90 100	2244 0008	1122	
2,90 2,87 2,77 2,69	2,86 2,78 2,73 2,64	85 80 15 60	40 80 15 60	3252 4044 1128 3146 3254	Нет 2022 Нет »	
2,56 2,52 2,42 2,33 2,20	2,53 2,47 2,34 2,30 2,16	15 45 20 40 25	15 45 30 20 25	$\begin{array}{c} 4154 \\ 4046 \\ 4262 \\ 2248 \\ 4048 \end{array}$	» 2023 2131 1124 2024	
Разы	леры элемент	гарной ячейки	л , А	$\begin{vmatrix} a_0 = 26, 12 \\ b_0 = 15, 09 \\ c_0 = 23, 87 \\ \beta = 90^{\circ} \end{vmatrix}$	$a_0 = 13,06 b_0 = 7,55 c_0 = 11,93 \beta = 90^{\circ}$	

Таблица 3

Результаты рентгенометрического анализа минералов пирсеит-стибиопирсеитовой серии (по данным различных авторов)

					Местор	ожден	ие, авто	þ					
Стрежан- ское * ское * Сокольное ** Поброволь- скал, 1965)		Доброволь- ская, 1965)	Силвер-Мон- тана (Веггу, Thompson, 1962)		Аспен-Коло- радо (Berry, Thompson, 1962)		Миргалим- сай *** ₹(Качалов- Тская, Троне- ва, 1964)		(Muxees, 1956)		(Pamµop, 1962)		
I	da/n	I	da∕n	I	da/n	I	da/n	I	da/n	1	da/n	I	da/n
3 6 10 7 4 5 5 2 4	3,26 3,04 2,96 2,79 2,46 2,34 2,29 2,16 1,99	5 10 10 4 3 3 1 2 4	3,09 2,98 2,83 2,48 2,37 2,30 2,17 2,12 2,10 2,00	1 2 10 9 6 5 6 3 2 5	3,11 3,05 2,97 2,80 2,47 2,34 2,30 2,17 2,11 1,994	5 10 9 4 3 5 3 1/2 1 4	3,11 3,00 2,84 2,50 2,37 2,33 2,19 2,15 2,08 2,01	7 9 4 5 3 2 10 9 3 2 6 2 ${}^{1/_{2}}$ 2 4 4 3	3,49 3,41 3,33 3,28 3,08 3,02 2,96 2,79 2,47 2,34 2,32 2,17 2,45 2,10 1,998 1,973 1,888	2 10 9 6 5 6 3 1 5 2	3,04 2,96 2,79 2,47 2,34 2,30 2,16 2,07 1,998	5 10 9 4 5	3,10 2,96 2,83 2,49 2,32
27	1,864	4	1,890	6	1,899	5	1,914	4	1,830	$\begin{vmatrix} 2\\ 6 \end{vmatrix}$	1,854		

нл цых

10-

1), прии зев ипкпо-

> Рептгенограммы сняты на установках: * УРС-55; камера РКД, Fе-излучение, аналитик; Н. Г. Чувикина (ЦНИГРИ); ** УРС-55, камера РКД, Fe-излучение, аналитик Г. В. Басова (ИГЕМ).

> сеиту основано на данных рентгеномстрических исследований. Как видноиз табл. 3, минерал имеет общие характеристики с эталонами месторождений Силвер, Аспен, Сокольное и удовлетворяет признакам отличия минералов указанных серий, приведенных Фронделем (1963).

> Сравнение результатов измерения спектров отражения (табл. 4, рис. 2) с опубликованными данными показывает достаточно большие различия в форме спектров и абсолютных значениях коэффициентов отражения (\hat{R}) .

> Полученные авторами данные хорошо согласуются с приведенными для стибиопирсеита месторождения Руен (Мънков, 1971). Формы спектров отражения для стибиопирсеита Стрежанского месторождения и месторождения Руен совершенно идентичны, и лишь абсолютные значения коэффициентов R отличаются на 1,5%, что может быть объяснено: 1) отсутствием в ограниченном числе измеренных зерен этого оптически двуосного минерала сечения с максимальным двуотражением (сечение Rg - Rp); 2) возможным влиянием вариаций химического состава (различия в содержаниях Си составляют 10%, Ag - 14% и др.) на силу двуотражения. Формы спектров отражения, полученные другими авторами, вероятно ошибочны. Различными источниками ошибок могут быть нестандартность эталонов, дефекты оптики, регистрирующей аппаратуры и др.

> Вариации химического состава, как показано на ряде минералов переменного состава, не могут так интенсивно влиять на форму спектров отра-

		Месторождение, автор												
Длина Стр волны, ско нм	Стре: ское	кан- *	Сокольное ** (Генкин, Добро- вольская, 1965)		Миргалим- сай *** (Ка- чаловская, Тронева, 1964)		Gra Mill 1962	y, man,	Мирга- лимсай (Халта- ев, Слю- сарев, 1969)	Руен **** (Мънков, 1971)				
	Rg'	Rp'	Rg'	Rp'	Rg'	Rp'	Rg'	Rp'	R _{max}	Rg'	Rg'			
450 460 470 472 484 500 520 527 540 550 575 579 600 608 620 640	32,0 31,4 31,0 31,2 30,0	31,2 30,0 29,0 29,0 29,0	35,0 34,0 32,0 33,6 33,3 34,0 35,0 35,0 35,0 35,0 35,0 35,0 35,0 38,0	Rp 30,0 28,0 28,5 29,0 28,3 28,0 27,0 26,0 26,5	Rg ^o 38,3 35,5 37,4 36,8 31,7 30,9	$ \begin{array}{c} Rp' \\ 36,2 \\ 33,5 \\ 34,6 \\ 34,2 \\ 29,8 \\ 29,5 \\ \end{array} $	Rg' 36,0 36,7 35,4 31,3	35,1 35,4 35,4 30,7	R _{max} 31,0 30,0 30,0 30,7 30,0 29,0	Rg' 32,75 31,70 31,50 30,00	Rg ⁴ 31,20 29,47 28,90 4 27,40			
600 670 700 740 780 820 860 900 940 .980 1050 * 9732 * 9732	29,1 28,4 27,6 26,6 26,1 25,8 25,6 25,4 25,5 25,8 10H - B	28,2 27,5 26,5 25,8 25,4 25,8 24,8 24,6 24,7 25,0 ремний, гановка	36,0 устанс СФЭУ;	23,0 Эвка ФМЭ- *** :	1, усов эталон -	ершенство — платина	29,5	29,4 в ЦНИ	25,7 ПРИ; а стекле 1	** 978.)	TOH -			
уста	ановки	МИМ-7	(ФЭУ-27	7); **	** этал	он — крем	, напыл ний уста	ановка	а стекле, 1 ПООС-1.	нестанда	ртная			

Таблица 4 Данные по дисперсии отражательной способности минералов пирсеит-стибиопирсеитовой серии, %

Таблица 5

Микротвердость минералов пирсеит-стибиопирсеитовой серии

	Микротвердост	гь, кг/мм²					
Месторождение	крайняя	средняя	Нагруз- ка, г	Число замеров	Автор		
Стрежанское *	151-179,2	165,1	20	30	Наши данные		
Сокольное		127	20	10	Генкин, Добровольская, 1965		
Миргалимсай *	153-165	159	20	20	Качаловская, Тронева, 1964		
	153 - 167	160	100	-	Berry, Thompson, 1962		
	146 - 155	-	25	-	Frondel, 1963		
Руен *	152,8-164,8	158,2	20	-	Мънков, 1971		
* Замеры на микр	отвердометре ПМ	/IT-3.	I	l			

20

жения. Это же подтверждается и сопоставлением спектров отражения полибазита (Безсмертная и др., 1973) и стибиопирсеита, обнаруживающим их сходство по общему виду и абсолютным значениям *R*. Различие наблюдается только в области 580—620 нм, где у стибиопирсеита появляется незначительный максимум.

Сопоставление данных по микротвердости стибиопирсеита Стрежанского месторождения с другими минералами — членами этой серии (табл. 5) обнаруживает сравнительную близость величин, особенно средних (160—165 кг/мм²). Некоторым исключением является лишь пирсеит Сокольного месторождения, имеющий несколько меньшие значения микротвердости (127 кг/мм²).

Таким образом, в результате проведенных исследований в рудах Стрежанского месторождения сделана первая в СССР находка стибиопирсеита — члена пирсеит-стибиопирсеитовой серии твердых растворов.

ЛИТЕРАТУРА

Безсмертная М. С., Чвилева Т. Н. и др. Определение рудных минералов в полированных шлифах по спектрам отражения и микротвердости, 1973.

20

47

90

0

- Генкин А. Д., Добровольская М. Г. О находке пирсеита в свинцово-цинковом месторождения Сокольное (Рудный Алтай).— В кн.: Новые данные о минералах СССР, вып. 16, 1965.
- тах СССР, вып. 16, 1965. Еремин Н. И., Округин В. М., Демин Ю. И. О серебряной и висмутовой минерализации в рудах Стрежанского месторождения (Рудный Алтай).— Вестн. МГУ, серия геол., 1971, № 3.
- Berry L. G., Thompson R. M.— Geol. Amer., 1962.
- Frondel Cl.— Amer. Miner., 1963, 48, N 5-6.
- Gray I. M., Millman A. P.- Econ. Geol., 1962, 57, N 3.

- Hall H. T.— Amer. Miner., 1967, 52, N 9—10. Мънков Сл. Списание Бълг. геол. дружество, 1971, 32, N 1.
- Peacock M. A., Berry L. G.- Miner. Mag., 1947, 28, N 198.
- Качаловская В. М., Тронева Н. В. Пирсент из месторождения Миргалимсай.— Зап. ВМО, ч. 98, № 2, 1964.
- Михеев В. П. Справочник, 1956.
- Округин В. М. Электронно-зондовое изучение сульфосолей серебра и висмута в рудах Стрежанского месторождения на Рудном Алтае.— Вестн. НСО, № 5, 1972.
- Рамдор И. Рудные минералы и их срастания, 1962.
- Халтаев Ж. Т., Слюсарев А. П. Ялпант и пирсеит в рудах месторождения Миргалимсай.— Вестн. АН КазССР, № 10, 1969.