МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им, А. Е. ФЕРСМАНА

Труды, вып. 16

1965 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

а. с. павленко, л. п. орлова, м. в. ахманова церфосфорхаттонит — минерал группы монацита

В известных силикатах и фосфатах тория и р.з.э. кристаллизующихся в структуре монацита, изоморфизм в катионной и особенно анионной частях весьма ограничен. Так, по литературным данным (Bowie, Horne, 1953) максимальное содержание ThO₂ в монаците составляет 28,20 вес. % и SiO₂ — 6,09%. В чералите (TR, Th, Ca, U)·(P, Si)O₄, который рассматривается как промежуточный член в ряду монацит — синтетический CaTh(PO₄)₂, содержание ThO₂ возрастает до 31,50% при содержании SiO₂ — 2,1%. С другой стороны, в хаттоните (Hutton, 1951) Се₂O₃ составляет лишь 2,6%, а P₂O₅ отмечен в виде следов.

В 1956 г. нами был обнаружен минерал примерно с равным содержанием монацитового и хаттонитового компонентов, в котором, как мы увидим далее, содержание ThO₂ находится в простом стехиометрическом отношении с содержанием SiO₂. Минерал был встречен в юго-восточной Сибири в амазонитовом пегматите совместно с колумбитом, фергюсонитом и цирконом. Пегматит залегает в виде изометричного штока среди мраморов, слабо дифференцирован, сложен микроклином — амазонитом и кварцем с незначительной примесью мусковита. Структура породы пегматоидная и блоковая. Альбитизация отсутствует. Из вторичных процессов отмечена лишь слабая серицитизация по трещинкам в микроклине.

Минерал встречается в виде отдельных, хорошо образованных кристалликов размером от микроскопических до 2 см, в одном случае найдена друза. По внешнему облику копьевидные и клиновидные кристаллы минерала похожи на кристаллы монацита. Цвет минерала от светло-желтого до красно-бурого; блеск смолистый до матового; твердость немного выше 5; удельный вес 5,06 (микропикнометрическое определение Р. Котиной).

Под микроскопом при одном николе минерал имеет желтоватую окраску, очень высокий рельеф и обнаруживает грубую неправильную трещиноватость. Правильные системы спайности отсутствуют. В скрещенных николях наблюдается чередование изотропизированных и анизотропных участков, образующих своего рода сеть (рис. 1). Анизотропные участки имеют невысокое двупреломление с Ng = 1,825 и Np = 1,821; показатель изотропных колеблется в пределах 1,823–1,820; $+ 2V = 20-21^{\circ}$; в коноскопе наблюдается слабая дисперсия r < v (такая же как у монацита и хаттонита).

Минерал достаточно интенсивно замещается редкоземельным фторкарбонатом, который на основании оптических свойств (Ne = 1,770; No = 1,670) и дебаеграмм был идентифицирован как паризит. Паризит образует корочки на поверхности минерала и развивается по трещинкам

Рис. 1. Микрофотография церхаттонита. ×30, николи скрещены

и в виде субмикроскопических выделений (см. рис. 1). Выделения паризита сопровождаются бурыми ореолами тонкодисперсных окислов железа. Кроме того в крупных кристаллах минерала обнаружены мелкие прожилки микроклина и серицита.

На дебаеграммах минерал дает отчетливую дифракционную картину, очень близкую к дебаеграммам монацита и хаттонита (табл. 1). Значения всех межплоскостных расстояний и, следовательно, параметры ячейки лежат в пределах, приводимых в литературе для различных монацитов, и наиболее сходны с дебаеграммами торийсодержащего монацита из Ратнапура и хаттонита.

Слабое влияние химического состава на структурные параметры в минералах группы монацита отмечалось многими исследователями, и в этом отношении наш минерал не составляет исключения. Действительно, как показывают данные табл. 2, параметры и объемы ячеек монацитов разного состава, а также чералита (Bowie, Horne, 1953) и хаттонита укладываются в значения для ряда LaPO₄—NdPO₄ (Monney, Pabst, 1951). Изучение природных монацитов с колебаниями в содержании ThO₂ от 2,00 до 7,33% и SiO₂ — от 0,60 до 1,68% подтвердило зависимость структуры монацитов только от вариаций отношения La : (Sm + Gd + U + Y) и независимость ее от содержания Th (Flinter, Butter, Harral, 1963). Объяснение этим фактам следует искать в соотношениях радиусов ионов в минералах

Таблица 1

Дебаеграммы манералов группы монацита и церфосфорхаттонита

Гидротермальный хаттонит (Костерин, Зуев, 1962)				Мона (Самен	цит * Мона ов, 1963) (Pabst		ацит t, 1961)	Монацит (Михеев, 1957)		Церфосфор- хаттонит **		Xаттонит (Pabst, 1957)	
I	d	I	d	I	d	I	d	Ι	d	I	d	I	d
				4	5 19	4	5 23					3	5,23
				4	4 66	4	4.72			5	4,69	5	4.71
				6	4.17	6	4.17			4	4,19	6	4,23
				6	3.51	5	3.52	3	3.54	5	3,52	4	4,53
				8	3.29	7	3.31	. 5	3.31	6	3,28	6	3,29
4	3 07	3	3.14	10	3.10	10	3,09	10	3,11	10	3,09	8	3,09
т	0,01	Ū	0,	4	2,98	2	2,99	4	2,99	1	2,96	3	2,98
2	2.85			10	2,87	7	2,88	9	2,88	8	2,86	7	2,89
3	2.66	2	2.67	6	2,61	2	2,61	3	2,61	1	2,60	3	2,65
0	,	_		6	2,44	3	2,45	3	2,45	1	2,44	1	2,44
				6	2,40			2	2,42				
				1	2,34			2	2,35				
		2	2,23	1	2,25			1	2,26	2	2,25		
				6	2,19	4	2,19	7	2,18	4	2,18	4	2,19
		2	2,14	8	2,14	6	2,13	8	2,15	4	2,13	2	2,15
								8	2,13			3	2,11
5	1,98	6	1,93	8	1,97	5	1,97	6	1,97	2	1,96	4	1,95
				3	1,95	1	1,96	3	1,94				
				6	1,90	2	1,90	3	1,90	3	1,89	3	1,89
				8	1,87	6	1,87	7	1,86	3	1,84	3	1,86
8	1,83	2	1,84	3	1,81	2	1,80	2	1,80	1	1,79	2	1,81
				6	1,77	4	1,76	5	1,76	1	1,76	2	1,78
				8	1,75	6	1,75	6	1,74	6	1,75	4	1,75
				6	1,67	4	1,69	7	1,69	2	1,69	2	1,69
				4	1,63	1	1,63	3	1,63			0	1 00
				6	1,61	1	1,60	5	1,60	1	1,60	3	1,60
				6	1,54	4	1,54	4	1,54	1	1,53	3	1,55
				6	1,49			2	1,47	2	1,49	0	1.11
				4	1,46			2	1,46	3	1,40	3	1,44
					Sk .								

* В таблице опущены линии со следующими d: 4,11; 2,53; 2,03; 2,02; 2,00; 1,83; 1,72; 1,71; 1,59. ** В таблице опущены линии, отвечающие паризиту.

Таблица 2

Параметры ячеек минералов группы монацита

Минерал	a	ь	с	β	V, Å ³	
Монацит	6,79	7,04	$\begin{array}{c} 6,47\\ 6,42\\ 6,48\\ 6,36\\ 6,43\\ 6,54\end{array}$	104°4′	299	
Монацит	6,76	7,00		103°10′	296	
LaPO ₄	6,89	7,05		103°34′	306	
CePO ₄	6,71	6,92		103°28′	287	
Чералит	6,74	7,00		104°24′	293	
Хаттонит	6,80	6,96		104°55′	299	

группы монацита. Замещение $Ce^{4+}(1,07Å) - P^{5+}(0,35Å)$ на $Th^{4+}(1,02Å) - Si^{4+}(0,37Å)$, очевидно, не будет изменять параметры и объем элементарной ячейки. Заметные изменения, как и следует ожидать, происходят лишь при изовалентных замещениях ионов с существенно различными радиусами (например, $La^{3+} - 1,14Å \rightarrow Nd^{3+} - 1,04Å$). (Радиусы ионов даны по Аренсу.)

В ИК-спектре минерала (рис. 2, 2) проявлены полосы, характерные, с одной стороны, для спектра монацита (рис. 2, 1) и, с другой — торита (рис. 2, 6), особенно прокаленного до 850° С (рис. 2, 5). Последнее может быть связано с переходом торита при 715— 950° С в моноклинную модификацию (Pabst, 1952). Полосы в областях 545, 625, 970 и $1100 \, cm^{-1}$ (табл. 3) по аналогии со спектром монацита могут быть связаны с валентными и деформационными колебаниями РО₄-тетраздров. Полосы поглощения SiO₄-групп (1000, 880, 460 $\, cm^{-1}$) выражены в спектре минерала довольно слабо, что вообще характерно для изотропизированных, метамиктных минералов (Ахманова, Леонова, 1963). При прокаливании минерала, так же как и в случае торита, полосы поглощения SiO₄-групп усиливаются, в то время как полосы РО₄-групп сохраняют прежнюю интенсивность

Таблица З

Частоты поглощения минералов в ИК-области

_	№ кривой	Частоты поглощения, см-1									
Минерал	на рис. 2	$\left \delta_1 (as) \operatorname{SiO}_4 \right \delta_1 (as) \operatorname{PO}_4 \right $		δ ₂ (as) PO ₄	v_1 (8) SiO ₄	v ₂ (as) SiO4	v ₂ (as) PO ₄	*	δH₂O	$ v(s), v(as)H_2O $	
Церфосфорхаттонит	2	460 cp.	545 сл.	5650 сл. 625 сл.	880 пл.	965 сл. 1000 с.	1120 пл.	1390, 1420 сл.	1550— 1650 сл.ш.р.	2800— 3700 с. ш. р.	
» , прокал. 850° С	$\left \begin{array}{c} 3 \end{array} \right $	450 ср.	545 сл.	585 ср. 625 сл.	870 пл.	970 сл. 1000	1110 сл.	1400 о. сл.	1650 о. сл.	3300—3600 о. сл. ш. р.	
» , прокал. 1000° С	4										
Монацит	1	475 о.сл.ш.	545 cp.	565—585 сл. 625 с. рз.		970 сл. рз.	1080— 1100 о. с.				
Торит	6	460 cp.	580 пл.		870 сл.	970— 1000 o.c.		1400 cp.	1520— 1650 ср.	3000— 3600 о. сл.	
Торит, прокал. 850° С	5	450 c.	540 пл.	585 с.	860 o. c.		1100 сл.*				

Обозначения: v — валентные колебания; б — деформационные колебания; (s) — симметричные колебания; (as) — асимметричные деформационные колебания; о. сл. — очець слабая; сл. — слабая; ср. — средняя; ил. — плечо; с. — сильная; о. с. — очень сильная; ш. — широкая; р. — размытая; рз. — резкая.

* — Полосы поглощения СО3 --иона в паризите.

(рис. 2,2, 4). Следовательно, большая устойчивость РО₄-групп по сравнению с группами SiO₄ в торийсодержащих минералах проявляется не только в простых соединениях типа монацита и торита, но и в минерале с комплексным анионным составом.

После прокаливания в спектре минерала исчезают полосы воды в областях 1550—1650 и 2800—3700 см⁻¹.

Химический состав минерала представлен в табл. 4. Содержания индивидуальных р.з.э. рассчитаны по данным рентгеноспектрального анализа, выполненного Н. В. Туранской. В анализированном материале содержится 1,59% CO₂, что обусловлено неотделимой примесью тонкодисперсного паризита. При расчете формулы минерала вычли 119 молей CaO, по 238 молей TRO_{3/2} и F и 119 + 238 молей CO₂, соответствующих составу паризита. Последовательность расчета приводится в табл. 4. Простые стехнометрические отношения компонентов получаются при расчете формулы минерала на 5, а не на 4 атома кислорода, что связано с достаточно высоким содержанием воды (H₂O⁺ = 4,43). Формула минерала имеет вид:

 $[Th_{0,51} (Ce, La, Nd)_{0,41} U_{0,02} Fe_{0,14}]_{1,08} [(Si_{0,55} \cdot P_{0,46})_{1,01} (O_{3,34} \cdot OH_{0,63} \cdot F_{0,03})_4] \cdot (OH).$

Состояние воды в минерале требует специального изучения, однако по ряду соображений ее скорее следует рассматривать как воду, захваченную при частичном метамиктном распаде минерала. В первую очередь об этом говорит полная идентичность дебаеграммы минерала дебаеграммам безводных монацита и хаттонита. В ИК-спектрах минерала имеются полосы поглощения, характерные для H₂O-групп (1550-1650 и 2800-3700 см⁻¹), которые резко ослабляются при прокаливании, и отсутствуют полосы ОНгрупп. Наличие в гидротермальном метамиктном хаттоните (Костерин, Зуев, 1962) 11,9% H₂O, выделяющейся при 200°C, позволяет предполагать аналогичную природу воды и в нашем минерале. Валентности катионов в формуле минерала (в сумме 8,27) могут быть с достаточным приближением скомпенсированы одним кислородом без привлечения гидроксильной воды. Ульянов (1963), проводивший исследование искусственных церортофосфатов, указывает, что соединения типа 9 СеРО₄. Се (OH)₃. ·xH₂O и 9 CePO₄·Ce(OH)₃ являются полуаморфными, а водосодержащие фосфаты $CePO_4 \cdot xH_2O$, $CePO_4 \cdot 2H_2O$, $CePO_4 \cdot 15H_2O$, так же как и СеРО₄, — кристаллическими. Все это позволяет принять для описываемого минерала формулу типа ABX₄·nH₂O, предложенную И. Д. Борнеман-Старынкевич:

 $(Th_{0,48}Ce_{0,39}U_{0,02}Fe_{0,13}^{\circ})_{1,02}(Si_{0,53}P_{0,44}C_{0,01})_{0,98}O_{3,98}(OH)_{0,02}\cdot 1,5~H_{2}O.$

Упрощенная безводная формула, предложенная Е. И. Семеновым (1963, стр. 117) на основании знакомства с материалами данной статьи до ее опубликования, имеет вид:

ThCeSiPO₈.

По рекомендации Э. М. Бонштедт-Куплетской минерал рационально назвать церфосфорхаттонитом.

Установление церфосфорхаттонита с почти равными содержаниями монацитового и хаттонитового компонентов ставит вопрос о существовании непрерывного изоморфного ряда между этими минералами. В пользу существования подобного ряда говорит тот факт, что составы природных монацитов и чералита описываются компонентами 4CePO₄--4ThSiO₄--- 2CaTh(PO₄)₂, предложенными С. Х. Бове и Дж. Е. Хорном (Bowie,

Таблица 4

Компоненты	Bec. %	Молекулярный всс	Молекулярное количество (×10 ⁴)	Атомное коли- чество (×104)	Атомное коли- чество за вычетом паризита	Атомное количество кислорода	Число атомов кислорода, рассчитанное на 5	Атомные количества
-			1					
ThO_2	40,56	264	1536	1536	1536	3075	- 1,02	0,51
Ce_2O_3	11,85)	328	360)	720)				
La_2O_3	4,51	326	138	276			2	
Pr_2O_3	1,47 24,66	330	44 743	88 1486	1248	1872	0,62	0,41
Nd_2O_3	5,64	337	167	334				
Sm_2O_3	1,19	349	34	68				
CaO	0,67	56	119	119	÷.	—	<u> </u>	
Fe ₂ O ₃	3,35	160	209	418	418	627	0,21	0,14
U_3O_8	1,63	842	19	57	57	152	0,05	0,02
РЬО	0,34	223	15	15	15	15	0,005	0,005
(Nb, Ta) ₂ O ₅	0,11	442	2	4	4	10	0,003	0,001
SiO_2	10,05	60	1672	1672	1672	3344	1,10	0,55
P_2O_5	10,00	142	704	1408	1408	3520	1,16	0,46
CO_2	1,59	44	361	361	(14)		—	
F	0,67	19	352			114	0,03	_
$H_{2}O^{+}$	4,43	18	2461	4922	4922	2461	0,81	1,63
H_2O^-	(2,03)	18	(1127)	_	_		-	-
$-0 = F_2$	100,09 0,28					$-\frac{15190}{57}$	$\frac{-5,0184}{-0,0188}$	

Химический состав и расчет формулы церфосфорхаттонита

Церфосфорхаттонит — минерал группы монацита

Нотпе, 1953). В то же время, имеются составы торийсодержащих монацитов, а также гидротермального редкоземельного хаттонита (Костерин, Зуев, 1962), которые не могут быть получены с помощью указанных компонентов. Простое стехиометрическое отношение компонентов CePO₄ и ThSiO₄ (1:1) в церфосфорхаттоните позволило предположить Е. И. Семенову (1963) существование в нем упорядоченности, подобной упорядоченности двойных солей. Таким образом, вопрос о кристаллохимической природе перфосфорхаттонита и изоморфизме в моноклинных редкоземельно-ториевых силикофосфатах требует дальнейшего изучения. К сожалению, структурная идентичность хаттонита и монацита не позволяет использовать при решении этого вопроса обычные методы рентгеноструктурного исследования природных объектов. Поскольку монацит и хаттонит легко синтезируются (Frondel и др., 1954), то немалую роль здесь могут сыграть эспериментальные исследования.

Нахождение церфосфорхаттонита в слабодифференцированном незамещенном пегматите однозначно определяет его происхождение. Парагенезис церфосфорхаттонита с колумбитом, фергюсонитом и цирконом указывает, что его выделение произошло на ранней, высокотемпературной стадии пегматитового процесса. Спектр р.з.э. в церфосфорхаттоните

Таблица 5

Минерал	La	Се	Pr	Nd	\mathbf{Sm}	Gđ	Dy	Er	Yb	Y
Церфосфорхаттонит	18	48	6	23	5	-	_	_	_	_
Монацит из гранита	24	43	6	22	5	_	_		_	_
Монацит из гранитного пегматита	27	40	5	19	4	3	2	<u> </u>	_	_
Монацит из альбитизированного пегма- тоидного шлира в граносиените	39	46	3	10	1	-	-	_	-	-
Торит из альбититов, связанных с не- фелиновыми сиенитами	15	22	3	12	3	4	5	3	3	30
Торит из альбитизированных гранитов	_		_	1	1	4	14	3	7	70
									i	

Состав р.з.э. в минералах (в % от ΣТК в минерале)

(табл. 5) ближе всего к спектрам монацитов из гранитов и высокотемпературных пегматитов и резко отличается от состава р.з.э. в низкотемпературных метасоматических монацитах и торитах (Павленко, Вайнштейн, Туранская, 1959). Знаменательно, что даже в торите из альбититов, связанных с нефелиновыми сиенитами, состав р.з.э. оказывается значительно более иттровым. Косвенным свидетельством того, что церфосфорхаттонит образуется при высокой температуре, служит также установленный Пабстом (1952) переход торита в моноклинную модификацию при 715—950° С. Естественно предположить, что изоморфная смесь, илидвойная соль изоструктурных хаттонита и монацита, должна быть устойчивой именно при высоких температурах. В более низкотемпературных условиях компоненты церфосфорхаттонита образуют два самостоятельных минерала — монацит и торит, парагенезис которых наблюдался в альбитизированных гранитах и пегматитах.

В низкотемпературных условиях церфосфорхаттонит, вероятно, мало устойчив, о чем свидетельствуют его изотропизация и интенсивное замещение паризитом даже в очень свежем, неизмененном пегматите. С этими процессами связан вынос из минерала радиогенного свинца, что наблюдается также и в изотропизированных торитах (Зыков, Ступникова, Павленко, Тугаринов, Орлова, 1961). Поэтому возраст минерала не мог быть определен свинцово-урано-ториевым методом. По аналогии в геологическом положении и минералогическом составе пегматита, содержащего церфосфорхаттонит, с другими амазонитовыми пегматитами этого региона его возраст можно принять в 420-450 млн. лет.

В заключение считаем долгом выразить благодарность Е. И. Семенову за ценные консультации.

ЛИТЕРАТУРА

- Ахманова М. В., Леонова Л. Л. Исследование метамиктного распада силикатов с помощью ИК-спектроскопии. Минералы СССР. — Труды Минер. музея, вып. 14, 1963.
- Зыков С. И., Ступникова Н. И., Павленко А. С., Тугаринов А. И., Орлова Л. П. Абсолютный возраст интрузий Восточно-Тувинского региона и Енисейского кряжа. Геохимия, 1961, № 7.
- Костерин В. В., Зуев В. Н. Гидротермальный хаттонит.— Зап. Всес. мин. об-ва, 1962, 91, № 1. Михеев В. И. Рентгенометрический определитель минералов. М., 1957.

Павленко А.С., Вайнштейн Э.Е., Туранская Н.В. О некоторых закономерностях поведения редких земель и иттрия в магматических и постмагматических процессах. — Геохимия, 1959, № 4. С е м е н о в Е. И. Минералогия редких земель. Изд-во АН СССР, 1963. У л ь я н о в А. И. Изучение реакций образования церортофосфатов. — Редкоземель-

- в л в л н о в А. и. изучение реакции ооразовання церортофосфатов. Редкоземельные элементы. Изд-во АН СССР, М., 1963.
 В о wie S. H. U., H o r n e Y. E. T. Cheralite, a new mineral of the monazite group. Mineral. Mag., 1953, 30, N 221.
 F linter B. H., Butler I. R., H a rral G. M. A study of alluvial monazite from Malaya. Am. miner., 1963, 38. Harral G. M. A study of alluvial monazite
- Frondel C., Collette R. L., Ross V., Berman E. Synthesis of uranium minerals U. S. Atomic Energy Comm., RME-3101, 1954.
- P a b s t A. Huttonite, a new monoclimic thorium silicate. Am. miner., 1951, 36, N 1 -2.
- P a b s t A. The metamict state. Am. miner., 1952, 37, N 3-4.
- Pabst A., Hutton C. O. Occurrence, optical properties and chemical composition of huttonite. - Am. miner., 1951, 36, N 1-2.