ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

1974

Вып. 23

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

И. В. ГИНЗБУРГ

новое в кристаллохимии пироксенов

Рентгеновский анализ структуры и основывающееся на нем представление о кристаллохимии пироксенов пережили два этапа с промежутком свыше 30 лет. В 1925—1930 гг. всего у двух: ромбического — гиперстена и у моноклинного — диопсида были определены параметры ячейки, пространственные группы симметрии и полностью расшифрованы структуры. Для ромбических пироксенов была принята структура гиперстена, для моноклинных — давалась по аналогии со структурой диопсида, так как лауэграммы, параметры ячейки и порошковые рентгенограммы его и некоторых других пироксенов были подобны. В 1954—1955 гг. по порошковым рентгенограммам было выявлено резкое отличие пижонита от сподумена и обоих — от остальных пироксенов, а также установлено некоторое различие между кальциевыми и натриевыми разностями.

Тем не менее, сложившееся к 1930 г. представление об одинаковой структуре всех моноклинных пироксенов несмотря на переменный их химический состав — оставалось незыблемым до 1959—1960 гг., когда одновременно с расшифровкой структур пижонита и клиноэнстатита, оказавшихся особыми, начался новый этап рентгеновского (монокристального и порошкового) изучения пироксенов. Анализ порошкограмм и дифрактограмм помог в 1963—1964 гг. выявить различия и, тем самым, ввести подразделения бескальциевых и кальциевых пироксенов по содержанию в них Mg и Fe²⁺ и натриевых — по содержанию Са и Na.

Особенно плодотворными были 1965-1970 гг., в течение которых были расшифрованы структуры феррогиперстена, клиноэнстатита, протоэнстатита, жадеита, йохансенита, фассаита, клиноферросилита, ферросилита, омфацита, авгита, диопсида, эгирина, сподумена, космохлора, пижонита, энстатита (у искусственных геденбергита и чермакита CaAl[SiAlO₆] определены пространственная группа и параметры ячейки). В течение второго этапа рентгеновского анализа монокристаллов выявлены детали и оттенки структуры 20 пироксенов, т. е. почти для всех крайних членов чистой линии и для некоторых промежуточных разностей. Параметры ячейки вычислены более чем у 500 пироксенов. В итоге познание кристаллохимии пироксенов стало глубже и приобрело иное качество. Полученные результаты оказались весьма интересны. К настоящему времени рентгенологи-структурщики опубликовали несводок и ряд статей (Burnham, a. o., 1967; Zussman, 1968; сколько Clark, a. o., 1968, 1969; Morimoto, Koto, 1969; Brown, 1972; Sadanaga, Okamura, 1971 и др.), что облегчает сопоставление структур.

В предлагаемом здесь обсуждении существующих данных основное внимание уделено изменчивости деталей строения и состава пироксе-

нов на фоне их кристаллохимического единства. Показано, что тонкие внутренние вариации полиздров и сложенных ими цепочек геометрически сопряженны и обусловливают внешне выраженные различия сингоний, пространственных групп симметрии, параметров и объемов ячейки. Выявлено сходство внутренних и внешних вариаций кристаллохимической структуры пироксенов от замещения катионов и от структурных превращений первого и второго родов.

Рассматривая структуру диопсида как представителя всех пироксенов, Н. В. Белов (1970) замечает, что различия в радиусах трех атомов, заполняющих полиэдры, деформируют структуру; как именно — излагается в настоящей статье. Охарактеризована и ее деформированность при структурных превращениях.

КРИСТАЛЛОХИМИЯ ПИРОКСЕНОВ В СВЕТЕ НОВЫХ ДАННЫХ

В соответствии с названиями пироксеновых видов-рядов приведены упрощенные формулы крайних или промежуточных их представителей (табл. 1) с указанием пространственных групп симметрии, а также пределов объема элементарной ячейки и плотности (для крайних по составу) разновидностей каждого вида).

Пироксены отличаются от остальных силикатов типовой формулой XYZ₂O₆ и цепочечным строением, в котором каждая цепочка состоит из однородных полиэдров M2, M1 и T с характерными значениями параметров ячейки со, bo. В указанном постоянстве пироксенов заключается относительное подобие их формул и внутреннего строения. При большом сходстве пироксенов обнаружено также их разнообразие не только в составе (что, в целом, давно известно), но и в вариациях структуры, выявленных рентгенографически в последнее десятилетие. Особенности строения уточняются все тем же путем, а также с помощью инфракрасной (Al) и мессбауэровской (Fe²⁺, Fe³⁺) спектросконии.

Положениям в типовой формуле соответствуют следующие структурные позиции или полиздры (и сложенные ими цепочки): $X - M2_{
m VI} =$ = октаэдр или $M2_{\rm VIII}$ — восьмивершинник, $Y - M1_{\rm VI}$ = октаэдр, Z — - T_{IV} = тетраэдр (римские цифры - координация или число вершин полиэдров). Формула пироксенов, следовательно, имеет два вида написания: химическое XYZ_2O и структурное $M2M1T_2O_6$.

Сопряженные с особенностями структуры вариации состава катионных позиций M2 и M1 более существенны, чем анионной, — Т. Главные вариации химизма ограничиваются десятью крайними чистыми членами, из которых девять известны в природе (табл. 2).

У огромного большинства пироксенов состав переменный: в каждом месте формулы обычно находится сразу несколько химических элементов, среди которых по количеству различаются главные, второстепенные и редкие примеси (они — в скобках): M2 — Ca, Na, Fe²⁺, Mg,(Li, K); M1 — - Mg, Fe^{2+} , Fe^{3+} , Al, Mn, (Cr³⁺, Ti³⁺, V, Co, Ni); T- Si, Al, (Fe³⁺, Ti⁴⁺). Между катионами осуществлен изоморфизм изовалентный — в пределах отдельных мест формулы: Mg \gtrsim Fe²⁺ в M2 и M1; Mg, Fe²⁺ \gtrsim Ca в M2; Mg, $Fe^{2_+}
ightarrow Mn$ B M1; Al $ightarrow Fe^{3_+}
ightarrow Ti^{3_+}$ B M1 m Si $ightarrow Ti^{4_+}$ B T, a также гетеровалентный (с компенсацией валентности - при одновременном замещении в двух положениях формулы), двух типов и разным сочетанием катионов:

Cr3+) 2. $|\mathbf{R}^{2+} \to \mathbf{R}^{3+} - M\mathbf{1}|$: Mg, $\mathbf{Fe}^{2+} \to \mathbf{Al} \pm \mathbf{Fe}^{3+} \pm \mathbf{Ti}^{3+}$; \mathbf{Fe}^{3+} , $\mathbf{Al} \pm \mathbf{Ti}^{3+}$ $|\mathbf{R}^{4+} \to \mathbf{R}^{3+} - T|$: Si $\to \mathbf{Al} \pm \mathbf{Fe}^{3+} \pm \mathbf{Ti}^{3+}$.

Минеральные виды-ряды пироксенов

Название	Упрощенная формула	Пространственные группы	Объем ячейки V, Åз	Плотность, г/см ³
Энстатит — ферросилит Протоэнстатит — протоферрогриер-	MgMg[Si ₂ O ₆]—Fe ²⁺ Fo ²⁺ [Si ₂ O ₆] Структурная развовилность предылущих	Pbca * (Pbcn *)	834,4-876,6**	3,11 **-3,96
стен	- I J - J F	(
Клиноэнстатит — клиноферросплит	То же	$P2_1/c$		
		$(C2/c)(P2_1/n?)$	418,1 **-437,6 **	3,19 **-3,70 **
Пижопит	$(Mg, Fe^{2+}, Ca)(MgFe^{2+})[Si_2O_6]$	$P2_{1/c}$ (C2/c)	429,1-436.0	3.17-3.45
Авгит	(Ca, Mg, Fe^{2+}) ₂ [Si ₂ O ₆]	C2/c	423.0-446.9	3.24 - 3.65
Диопсид — геденбергит	$CaMgSi_2O_6$ — $CaFe^{2+}[Si_2O_6]$	C2/c (Pbca)	436.6-456.5	3,22-3,65
Фассаит	Ca(Mg, Fe ²⁺ , Fe ³⁺ , Al)[Si _{1,5} Al _{0,5} O ₆]	C2/c	430.2**-446.3	3 23-3 39
Йохансенит	Ca(Mn, Mg, Fe ²⁺)[Si ₂ O ₆]	C2/c	450.5-461.3	3,44-3,55
Эгирин	$NaFe^{3+}[Si_2O_6]$	C2/c	428 0-429 4	3,45-3,60
Эгирин-диопсид, эгирип-геденбергит	(Ca, Na)(Fe ²⁺ , Mg,Fe ³⁺)[Si ₂ O ₆]	C2/c	435.9-447.3**	3, 32 - 3, 60
Жадент	NaAlSi ₂ O ₆	C2/c	400 1-406 1	3 43-3 25
Омфацит	(Na, Ca)(Al, Fe ³⁺ , Mg, Fe ²⁺)[Si ₂ O ₆]	C2/c, 2P, P2/n	421 1-436 2	3,18-3,39
Космохлор	NaCr ³⁺ [Si ₂ O ₆]	C2/c	418 6-420 6	
Сподумен	LiAl[Si ₂ O ₆]	C2	388 1-391 4	3 15-3 20
Чермакит (искусственный)	CaAl[SiAlO ₆]	$C2/c, \ (P2_1/n?)$	421,8-422,3	3,42-3,43

II римечание. Сводные дапные автора для пироксенов установленного состава, взятые из опубликованных в 1960-1972 гг. источников.

* Ромбическая сингония; остальные нироксены моноклинной сингонии; в скобках — прозтранственные группы, обнаруженные только у искусственных пироксенов (*Pbcn*, P2₁/*n*, C2/c) или при отжиге (*Pbcn*, C2/c) и ударном сжатии (*Pbca* — у диопсида) у природных минералов. V, A³ — по монокристальным и порошковым данным, *d*, *z*/*cM³* — измеренная.

** Объем элементарной ячейки и плотность у искусственных пироксенов. Указаны колебания V и d – для крайних по составу членов.

Химический состав и координация структурных позиций крайних членов пироксенов

Минерал	M_{2VI}	Mivi	T_{IV}		Минерал	$M2_{\rm VIII}$	M1 _{VI}	T_{IV}	
Энстатит Ферросилит Сподумен	Mg Fe ²⁺ Li	Mg Fe ²⁺ Al	Si2 Si2 Si2	06 06 06	Диопсид Геденбергит* Йохансенит Чермакит*	Ca Ca Ca Ca	Mg Fe ²⁺ Mn Al	$\begin{array}{c} \mathrm{Si}_2\\\mathrm{Si}_2\\\mathrm{Si}_2\\\mathrm{Si}_2\\\mathrm{Si},\ \mathrm{Al}\end{array}$	O6 O6 O6 O6
II римечание. Структура этих пиро- ксенов изучена, кроме двух, помеченных звездочками: у них найдена лишь прост- ранственная группа и параметры ячейки. Жосмохлор Эгирин					Na Na Na	Al Cr ³⁺ Fe ³⁺	Si2 Si2 Si2	O6 O6 O6	

Во всяком пироксене возможны любые указанные изовалентные и гетеровалентные замещения; важно количество замещаемых катионов, но в единичной позиции, в узле кристаллической решетки, может находиться лишь один химический элемент: $\operatorname{Ca}_{0.5}^{2+}$ вместо $\operatorname{Na}_{1,0}^{1+}$ — невероятно. В вычисленных из химических анализов формулах пироксенов необходимо учитывать распределение катионов по структурным позициям M2, M1, T (местам формулы X, Y, Z) так, чтобы сумма их коэффициентов была бы, соответственно, равной: 1,00, 1,00 и 2,00.

Структура отдельных пироксенов как цепочечных силикатов в общем подобна. Они сложены чередующимися одинарными цепочками трех сортов: тетраэдров — Т, октаэдров — М1 и восьмивершинников или неправильных октаэдров — M2; все они направлены по удлинению минерала вдоль c_0 . Тетраэдры — T соединены в цепочку вершинами, октаэдры — M1, октаэдры или восьмивершинники — M2 соединены в обоих M1 и M2 цепочках ребрами. Периоды повторяемости элементарной ячейки у всех пироксенов одинаковы по c_0 — два тетраэдра и по b_0 — одна цепочка тетраэдров: но они резко различны по a_0 — два слоя тетраэдров у моноклинных и четыре — у ромбических¹. Это самая значительная вариация структуры пироксенов, которая отразилась на их внешнем облике и четко различима кристаллооптически. Она представляет собой отражение разной координации M2, которая зависит от заданной размерности заселяющего катиона. Малые — Mg, Fe²⁺ — удалены от двух вершин тетраэдра и имеют шестерную координацию, а крупные — Са. Na — сближены с ними и находятся в восьмерной координации. Координация M1 и T у всех пироксенов одинакова.

Значения периодов повторяемости — параметров ячейки пироксенов подвержены колебаниям из-за изменения состава или структуры:

и моноклинных и ромбических	У моноклинных	У ромбических
co 5,18-5,32 Å	a ₀ 9,38-9,98 Å	a ₀ 18,21-18,43 Å
b ₀ 8,40–9,16 Å	β 104,8-110,25°	β 90,0°

Новое в кристаллохимии пироксенов основывается на недавно выявленных отклонениях в размерностях каждого из трех полиэдров M2, M1, T и в специфике их пространственного расположения. Это самые тонкие, частные, а по сути — внутренние вариации структуры пироксенов, которыми в конечном итоге обусловлены все другие, более общие и потому

^а У искусственных проторомбических a_0 — в два *T*-слоя, как у моноклинных ($a_0 = 9.25$ Å).

лучше проявленные, как бы внешние ее вариации. Отклонения в размерах полиэдров связаны с различием межатомных расстояний, а отклонения в пространственном рисунке структуры вызваны комбинацией типов трех полиэдров и сортов их цепочек.

Различия в размерах полиэдров и в их пространственном расположении — два взаимосвязанных внутренних фактора, которые предопределяют более ярко выраженные внешние вариации структуры пироксенов. Они представлены (по нисходящему значению): 1 — разными сингониями; 2 — разными пространственными группами симметрии (в пределах обоих сингоний) и 3 — разными параметрами ячейки (при разных и одинаковых пространственных группах симметрии).

ВАРИАЦИИ ВЕЛИЧИНЫ И ФОРМЫ ПОЛИЭДРОВ ПИРОКСЕНОВ И ЗАМЕЩЕНИЯ КАТИОНОВ

Размерность $M2_{VIN}$ $WIII, M1_{VI}, T_{IV}$ полиэдров дается по межатомным расстояниям — от ядер кислорода, расположенных в их вершинах, до ядер соответствующего катиона — в их центре. Каждое межатомное расстояние слагается из ионных радиусов кислорода и катиона с учетом отклонения их конфигураций от сферических или в связи с частичной перекрытостью. К настоящему времени найдены межатомные расстояния в структурах всех крайних чистых членов пироксенов и в некоторых промежуточных. Их величины можно принять в качестве корректирующих размерность катионов в каждой из трех M2, M1, T позиций. Так, средние межатомные расстояния катион — кислород располагаются в ряды, в которых последовательность соответствует увеличению среднего радиуса катиона (табл. 3). Положение о том, что в кристаллической структуре химический элемент (как катион, так и анион) проявляется прежде всего величиной, т. е. ионным радиусом, справедливо и для пироксенов.

Средние значения межатомных расстояний M2 = 0, M1 = 0, T = 0зависят от величины заселяющих их катионов, но контролируются предельными размерами самих полиэдров. Размерность полиэдра одного и того же типа меняется от вхождения разных катионов тем больше, чем больше разница в ионных радиусах катионов, но в разных полиэдрах одинаковые катионы имеют разную величину. Влияние на величины радиусов катионов (Ri) размерности полиэдров особенно наглядно видно из сопоставления данных последней колонки табл. З. Для самого большого и самого малого катиона Δri в M2 = 31%, а $\Delta M2 = 0 = 15\%$; Δri b M1=37%, a $\Delta M1=0=6,5\%$; Δri b T=26%, a $\Delta T=0=$ = 2,40 (без Fe³⁺ и Ti⁴⁺), т. е. колебания величин средних межатомных расстояний значительно меньше колебаний средних ионных радиусов. Если прежде по разнице радиусов таких ионов в M2, как Mg и Ca, равной 31%, их замещение было трудно объяснить, так как их радиусы ионов почти вдвое превышали предельные 16%, допускаемые Гольдшмидтом при изоморфизме, то теперь, учитывая $\Delta M2 - O = 15\%$, оно не противоречит ранее установленному. Для объяснения вхождения в M1 Al вместо Mg, разница ионных радиусов которых $\Delta ri = 18\%$, привлекали высокое давление, что сейчас излишне, так как даже для Al и Mn, с разпицей $\Delta ri = 37\%$, $\Delta M1 = 0$ всего 6,5%. Определяемые из средних межатомных расстояний пределы колебания средних размеров полиэдров различны: у $M2_{VI} = 4\%$, $M2_{VIII} - 2.4\%$, $M2_{VI-VIII} -$ от 9 до 15%, y $M1_{R^{3+}} = 4.9\%$, $M1_{R^{2+}} = 4.2\%$, $M1_{R^{3+}-R^{2+}} - \text{or } 2.4 \text{ go } 6.5\%$, y T = 100%= 2,4% (без Fe³⁺, Ti⁴⁺).

Из сопоставления средних межатомных расстояний, т. е. средних размеров полиэдров каждой позиции (см. табл. 3), заключаем, что они

Таблица З

Сравнение средних ионных радиусов катионов с межатомными расстояниями для тех же катионов и кислорода в трех полиэдрах пироксеновой структуры, Å

Средние ионные радиусы и межатомные расстояния				Разность	средних ионни	ых радиусов и	межатомных р	асстояний			
					Полиэ)	др M2					
Катион	Mgvi	(LiVI)	$\mathrm{Fe}_{\mathrm{VI}}^{2+}$	NavIII	Ca _{VIII}	(K _{0,01})	Разность катионов	Mg-Fe ²⁺	Fe²+—Na	Na— Ca	Mg—Ca
ri, M2 M2—0	0,72 2,15	0,73 2,21	0,79 2,22 $-2,24$	0,98 2,47—2,52	1,04 2,50—2,53	1,32	$\Delta ri, M2$ $\Delta M2$ —O	0,07 0,09=4%	0,19 0,30=12%	$0,06 \\ 0,06 = 2,4\%$	0,32=31% 0,38=15%
	Полиэдр М1										
Катион	AlVI	$(\mathrm{Cr}_{\mathrm{VI}}^{3+})$	Fes+ VI	MgVI	${ m Fe}_{ m VI}^{2+}$	Mn_{VI}^{2+}	Разность катионов	Al-Fe ³⁺	Fe ³⁺ -Mg	Mg—Mn ²⁺	Al-Mn ²⁺
ri, M1 M1—0	0,54 1,92—1,93	0,64 1,998	0,66 2,02-2,03	0,72 2,07-2,08	0,79 2,14-2,15	$\substack{0,86\\2,173}$	Δri, M1 ΔM1—0	0,12 0,10=4,9%	0,06 0,06=2,4%	0,14 0,10==4,2%	$\substack{0,32=37\%\0,153=6,5\%}$
Полиэдр Т											
Катион	Si при M1=Al	Si при M1=Мп	Si _{1,5}	AI _{0,5}	(Ti4+)	(Fe ³⁺)	Разность катионов	si _{Al} -si _{Mn}	Si-Al	Si—Ti, Fe	Si _{AlVI}
ri, T T—0	0,37 1,622	0,37 1,644	0,37 1,€	0,54 66	0,66 —	0,66	$\Delta ri, T$ $\Delta T = 0$	0,00 0,022	0,14	0,29	0,14=26% 0,044=2,4%

II римечания. 1. Средние монные радиусы (Ri) даны по разным системам и нескольким источникам; средние межатомные расстояния — по литературным данным. 2. В скобки заключены элеменгы, обычно находищиеся в виде примеси. 3. Fe²⁺—О в M2 больше, чем в M1, на 0,08—0,10 Å; Mg=-O в M2 больше, чем в M1, на 0,07—0,10 Å; Alvi — целиком занимающий положение M1 уменьшает M1—O до 1,925 Å, а Al_iv, занимающий ¹/4 позиции T_b увеличивает T — O до 1,666 Å,

изменяются взаимно, по неравновелико. Так, значение T = O, занятого только Si, изменяется в связи с изменением значений M2 = O и M1 = O, занятых разными катионами. Тот же катион в M1 может иметь разные величины M1 = O из-за разных катионов в M2 (Мд клиноэнстатита и диопсида, Al сподумена и жадеита). Тот же катион в позициях M2 и M1имеет разные значения (Мд клиноэнстатита и Fe²⁺ клиноферросилита). Тот же катион, например, в M2 получает разные значения M2 = O в том случае, если M1 заселяется разными катионами (эгирин, жадеит, космохлор). Изменение размера хотя бы одного катиона, например, позиции M1 ведет к изменению величины M2 = O (сподумен, жадеит), а позиции M2 =обусловливает изменение расстояний M1 = O и T = O (диопсид, йохансенит).

Колебания средних значений межатомных расстояний для тех же самых катионов в той же позиции (см. табл. $3 - \Delta M1 - O = 0.01$; $\Delta T - O = 0.02$; $\Delta M2 - O = 0.01 - 0.05$ Å) и в разных позициях ($\Delta M2 - O - \Delta M1 - O = 0.07 - 0.10$ Å) — признак непостоянства размерности полиздров и катионов.

Судя по отдельным межатомным расстояниям, формы тетраэдров, M1октаэдров, M2-октаэдров и восьмивершинников далеки от идеальных. Каждый из них в той или иной степени искажен. Например, тетраэдры всегда удлинены в направлении вершин, которыми они соединены в цепочку; M1-октаэдры по сравнению с M2-октаэдрами искажены менее. Октаэдры M2 удлинены в сторону тетраэдрической цепочки и даже переходят в восьмивершинники — еще более удлиненные в том же направлении. Колебания отдельных значений межатомных расстояний показывают способность полиэдров в целом и образующих их катионов и кислорода, в частности, по-разному искажаться (поляризоваться) в кристаллической структуре, тем самым приспосабливаясь к ее строению.

Итак вариации межатомных расстояний, т. е. размеренности полиэдров, оказываются следствием частичного или полного замещения катионов; они также могут явиться результатом структурных превращений при том же химическом составе.

ВАРИАЦИИ СТРОЕНИЯ ЦЕПОЧЕК КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ПИРОКСЕНОВ И ПРОСТРАНСТВЕННЫЕ ГРУППЫ СИММЕТРИИ

Первоначально каждая из трех разных цепочек M2, M1 и T ромбических и моноклинных пироксенов считалась неизменной и состоящей из одноразмерных полиэдров. В этом и видели постоянство внутреннего строения пироксенов. Новыми исследованиями, однако, установлен целый ряд отклонений от этого постоянства. Самую простую структуру, как недавно выяснилось, имеют большинство моноклинных пироксенов и проторомбические пироксены — у них все три полиэдра, составляющие каждую из трех однотипных цепочек, одного типа. У ромбических пироксенов ¹, их моноклинных аналогов и у моноклинного пижонита M2 и M1 полиэдры и их цепочки одного типа, а один тип T-полиэдров образует два типа чередующихся T-цепочек.

Сподумен имеет по два типа M2, M1 и T полиэдров, чередующихся в одноименных цепочках одного типа. P2-омфацит² характеризуется четырымя типами всех трех M2, M1 и T полиэдров, которые чередуются

¹ У этих пироксенов, их моноклинных аналогов и пижонита, а также у сподумена порошковые рентгенограммы разные и к тому же отличаются от всех C2/c моноклинных.

² У Р2- и С2/с-омфацита порошковые рентгенограммы одинаковые.

Рис. 1. Стилизованные схемы типов *T*-цепочек шести пространственных групп симметрии различных пироксенов по данным Зусмана *1*—ось симметрии II порядка, 2—винтовая ось симметрии II порядка

End

Объяснения см. в табл. 4

168 1177 168 177 168 177 168 177 0марацит b

Рис. 2. Конфигурация T - O ценочки и угол $O_3^{'} - O_3 - O_3^{''}$ у пироксенов разных пространственных групп и состава, в проекции на (100). Построена автором по литературным данным

но два в двух типах каждой из трех цепочек. Все четыре сочетания типов полиэдров и сортов их цепочек сведены в табл. 4, где указаны отвечающие им пространственные группы симметрии. Взаимосвязь внутренних вариаций структуры, состоящих в сочетании полиэдров и сортов цепочек внешним показателем прост ранственной группой симметрии, показана на рис. 1, заимствованном у Зусмана (Zussman, 1968).

Сейчас у пироксенов известны пространственные следующие группы симметрии: Pbca, Pbcn ромбической сингонии в С2/с $P2_1/c P2, P2/n, C2$ — моноклинной. Из них С2/с считается исходной, а все остальные — производные и выводятся из нее сдвигами цепочек и (или) смещением катионов в M2 и M1 (см. рис. 1). Пироксены пространственных групп C2/с и Pbcn характеризуются самым простым строением: у них полиэдры однотипны и они слагают цепочки одного сорта. В пироксенах остальных пространственных групп наблюдается повторяемость, поразному выраженная, или систематическая расщепленность то полиэдров, то цепочек, а также тех и других вместе. За символом, выражающим пространственную группу, который отражает лишь «голые» законы симметрии, каждый раз скрывается вполне конкретное содержание. амфибо-Так, V некоторых

лов и полевых шпатов пространственная группа одна и та же — C2/m, хотя типы структур — слоистая и каркасная различны. У пироксенов цепочечный тип структуры не меняется, но он испытывает разные вариации, внешне зафиксированные в разных пространственных группах, которые порождены внутренними вариациями (см. табл. 4, рис. 1). Наименьшее число независимых кристаллографических позиций — 6 наблюдается у C2/с и Pbcn пироксенов (M2, M1, T, O₁, O₂, O₃); наибольшее — 24 у P2 пироксенов (каждая из указанных выше позиций расчетверена).

Среди деталей вариаций кристаллической структуры пироксенов особенно показательна зигзагообразность или степень вытянутости T = Oцепочки, устанавливаемая по углу $O_3 = O_3 = O_3$, где O_3 — вершины, которыми тетраэдры соединяются друг с другом в цепочки (рис. 2). Стеи ень вытянутости цепочки отчасти сказывается на величине параметра c_0 .

Таблица 4

Различия кристаллической структуры пироксенов по типам полиздров и цепочек

Полиэдр	Тип полиздра и тип цепочки	Пространственные группы
M2 n M1	По одному типу в каждой M2—О и M1—О цепочке По два типа, которые чередуются в каждой M2—О и M1—О цепочке По четыре типа, чередующихся по два в каждом из двух типов M2— О и M1—О цепочек	C2/c, P21/c Pbca, Pbcn C2 P2
Т	Один тип и один тип T — О цепочек Один тип и два типа T — О цепочек Два типа, которые чередуются в одном типе T — О цепочки Четыре типа и два типа T — О цепочек, каждая с двумя разными T	C2/c, P ben P21/c, Pbea C2 P2

ПРОСТРАНСТВЕННАЯ СОПРЯЖЕННОСТЬ РАЗНОЙ ВЕЛИЧИНЫ ПОЛИЭДРОВ И ТИПОВ ЦЕПОЧЕК У ПИРОКСЕНОВ

Разная средняя размерность полиэдров (M2 = 2,15 - 2,53 Å, M1 = 2,17 - 1,92 Å, T = 1,666 - 1,662 Å) наряду с конкретными их размерами определяет собой не только разную величину и форму полиэдров, но сказывается на общей конфигурации, в том числе на изогнутости сложенных ими цепочек, а также на их взаимном смещении. В итоге осуществляется пространственная сопряженность всей структуры пироксенов. Если учесть, что каждый полиэдр может быть одного, двух и четырех типов (по величине и форме), а одноименная цепочка — одного или двух типов (по относительной зигзагообразности и по перемежаемости полиэдров), то станет очевидной сложность и стройность взаимных связей между размерностью полиэдров и геометрией их пространственного расположения в кристаллической структуре пироксенов.

Вариации размерности полиэдров, согласуясь с вариациями строения сложенных ими цепочек, отражаются на параметрах ячейки. Но они не являются простой суммой межатомных расстояний. Даже самый простой из параметров — c_0 , отвечающий двум тетраэдрам в одноименной цепочке, не слагается из двух наиболее длинных межатомных расстояний, по которым тетраэдры соединяются в цепочку, так как имеет значение угол взаимного наклона тетраэдров, т. е. искривленность цепочки. Параметр c_0 определяется как проекция на плоскость (100) двух соседних тетраэдров в цепочке. Параметр b_0 охватывает расстояние между смежными M1 — цепочками, разделенными M2 — цепочкой. Параметр a_0 заключает две T цепочки, M2 цепочку между ними и по половине M1 цепочки с двух сторон у моноклинных пироксенов; у ромбических a_0 — удвоен. Таким образом, параметры ячейки — это сопряженная совокупность тончайших вариаций размерности полиэдров и конфигурации сложенных ими цепочек, испытавших взаимное влияние.

Изменение размерности лишь части полиэдров хотя бы в одной цепочке сопровождается отклонениями в структуре пироксенов и приводит в итоге к изменению величин параметров ячейки в рамках той же пространственной группы симметрии. Более существенные и неравновеликие отклонения в размерах полиэдров и в конфигурации их цепочек завершаются уже сменой пространственных групп симметрии и даже сингонии при одновременном изменении параметров ячейки. Например, изменение размерности и координации M2 полиэдра сопровождается весьма деликатным разделением T цепочки на две с разной вытянутостью — это знаменует переход пространственной группы C2/c в P2₁/c моноклинной сингонии или в Pbca — ромбической.

При минимальных размерах M1 и M2 полиэдров отмечается раздвоение каждого из них и T полиэдра, а также их перемежаемость в цепочках одного типа. При нахождении в M2 и в M1 по два разной величины катиона происходит расчетверенность размеров у M2, M1 и T полиэдров, которые группируются по два в двух типах каждой их цепочки (см. табл. 4).

Из данных по расшифровке структур пироксенов следует, что в смене пространственных групп симметрии заложены вариации размерности и пространственной геометрии. Значит, изменение пространственной группы является количественной характеристикой структуры пироксенов, подобно изменению параметров и объема ячейки. Связь элементов симметрии каждой пространственной группы с особенностями вариаций внутреннего строения пироксенов наглядно иллюстрируется уже упоминавшемся рис. 1.

Итак, путем сопряженных отклонений в размерах полиэдров и в строении их цепочек достигается общая целостность пироксеновой структуры. Вариации полиэдров и их пространственной геометрии — тончайшая реакция всей структуры пироксенов на замещение катионов и на изменения P - T условий образования и преобразования пироксенов. Обусловленные совместными вариациями деталей структуры изменения объема ячейки пироксенов — показатель плотности пироксенов при разном и одинаковом их составе.

ВАРИАЦИИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ПИРОКСЕНОВ ОТ ЗАМЕЩЕНИЯ КАТИОНОВ И ОТ СТРУКТУРНЫХ ПРЕВРАЩЕНИЙ

Все вариации кристаллической структуры пироксенов подразделяются на две группы: на произошедшие вследствие изменения состава и на возникшие без изменения состава. Изоморфное вхождение конкретных химических элементов в определенные позиции структуры непосредственно раскрывает связь состава и строения. Преобразование структуры при неизменном составе служит косвенным признаком связи состава и строения, так как только определенного состава пироксены обладают полиморфизмом (табл. 5).

В целом взаимоприспособляемость состава и структуры пироксенов четырехвариантна (табл. 6).

1. Изменения пространственной группы симметрии (— сингонии) и параметров ячейки вследствие изменения состава.

2. Такие же изменения структуры при постоянном составе.

3. Изменения только параметров ячейки под влиянием изменения состава.

4. Изменения параметров ячейки при одинаковом составе.

И зменения структуры вследствие изменения состава. Нахождение в M2 не (Ca, Na)_{VIII}, а (Mg, Fe²⁺)_{VI} приводит к разным пространственным группам симметрии C 2/c и $P2_1/c$ и даже к разным сипгониям C 2/c и Pbca. Нахождение в M2 не Na_{VIII}, а Li_{VI} обусловливает смену пространственных групп симметрии C2/c на C2. В обоих случаях изменяются еще и параметры ячейки.

И зменение структуры при постоянном составе. Это структурные превращения первого рода. Они отмечаются у пироксенов определенного состава. MgMgSi₂O₆ имеют орто-прото-клино-превращения, отвечающие пространственным группам симметрии: *Pbca* — *Pbcn* — $P2_1/c$, а у Fe²⁺ Fe²⁺Si₂O₆ выявлен один орто-клино-переход *Pbca* — $P2_1/c$. У обоих с превращениями изменяются параметры ячейки. (Ca, Na) (Mg, Fe²⁺, Al, Fe³⁺)Si₂O₆ характеризуется тремя пространственными

В проце	ессе замеще	ния катио	нов	При с	руктурных превращениях			
Название	M2—O	M1—O	<i>T</i> -0	Название	M2—O	M1-0	T-0	
Клиноэнста- тит P2 ₁ /c	Mg _{V1} 2,15	Mg 2,07	Si 1,64—A * 1,66—B	Энстатит Pbca ·	Mg _{VI} 2,158	Mg 2,07	Si 1,630—A 1,641—B	
Клипофер- росилнт Р2 ₁ /с	Fe ²⁺ 2,224	Fe ²⁺ 2,137	Si 1,623—A 1,635—B	Ферросилит Pbca	Fe ²⁺ 2,240	Fe ²⁺ 2,145	Si 1,624—A 1,614—B	
Сподумен С2	Li _{VI} 2,21	Al 1,920	Si 1,622—A	Протоэнста- тит <i>Pbcn</i>	${}^{\mathrm{Mg}_{\mathrm{VI}}}_{2,25}$	Mg 2,10	Si 1,65—A	
Диопсид C2/c	Ca _{VIII} 2,499	Mg 2,078	Si 1,636—A	Омфацит C2/c	Ca, Na _{VIII} 2,495	Mg, Al, Fe 2,04	Si 1,630—A	
Фассаит C2/c	Ca 2,53	$ \begin{array}{c c} Mg, \ F^{2+} \\ Al, \ Fe^{3+} \\ 2,07 \end{array} $	Si, Al 1,66—A	Омфацит Р2	Na > Ca 2,48	Mg, Fe 2,06	Si 1,64	
Жадент C2/c	$\left egin{array}{c} \mathrm{Na}_{\mathrm{VIII}} \\ 2,469 \end{array} \right $	Al 1,93	Si 1,622—A		Na, Ca 2,46	Mg, Fe 2,08	Si 1,63—A2	
Эгирин С2/с	Na 2,515	Fe ³⁺ 2,024	Si 1,628—A		Ca, Na 2,49	Al 1.92	Si 1.63—C1	

Изменения межатомных расстояний пироксенов, Å

Примечание. Таблица составлена в основном по данным Кларка с соавторами (Clark a. a., 1968; 1969), в меньшей степени по другим источникам.

Ca > Na

2,53

Al(Fe)

1,96

Si

1,62-C2

Si

1,644 -

* Буквами А, В, С обозначены цепочки разных типов.

 Mn^{2+}

2,173

Ca

2,53

Йохансенит

C2/c

группами симметрии C2/c, P2, P2/n моноклинной сингонии (при сходных параметрах ячейки).

И зменения параметров ячейки без изменения пространственной группы симметрии. Эти изменения, согласные с изменением состава, известны у ромбических — *Рbca* и у моноклинных — *C2/c*, *P2* пироксенов; они тем больше, чем больше разница в размере радиуса ионов, замещающих друг друга катионов в *M1* или в *M2* и *M1*; замещения в *M2*, а также в *M2* и в *T* дают меньшие изменения параметров ячейки (см. табл. 3).

Изменения параметров ячейки при неизменном составе. У пироксенов обнаружены явные признаки структурных превращений второго рода, которые заключаются в изменении только параметров ячейки без изменения состава и без признаков структурных превращений первого рода. Такие изменения получены в пироксенах ис-

Примеры изменения кристаллической структуры пироксенов под влиянием замещения катионов и структурных превращений

Измен	ения решетки	Причины, вызв	авшие изменения			
главные	сопутствующие	сопутствующие замещения катионов структурные цревращения		Примеры		
Разные синго- нии	Разные простран- ственные груп- пы, Т-цепочки, М2, параметры и объем ячейки	Сав $M2_{ m VIII}$ — Mg в $M2_{ m VI}$	—	Диопсид и энста- тит		
	Разные прост- ранственные груп- пы, цараметры и объемы ячейки	-	1-го рода; орто- клино- переход (форма изменена сильно)	Клиноэнстатит и энстатит		
Разные прост- ранст- венные группы	Разные параметры и объемы ячейки	Na ¹⁺ в M2 _{VIII} — Li ¹⁺ в M2 _{VI}		Жадеит и сподумен		
	Разные <i>Т-</i> цепочки, M2 и M1		1-го рода; упоря- доченность R ³⁺ в <i>M1</i> (форма изме- нена слабо)	С2/с-омфацит и Р2-омфацит		
Разные пара-	Разные параметры и объемы ячейки	Мд в <i>M</i> 1— Fe ²⁺ в <i>M</i> 1	_	Диопсид и геден- бергит		
метры			2-го рода (сильно изменены разме- ры)	Фассаит и фассаит		
Разные цара-	Разные <i>Т-</i> цепочки* и объемы ячейки	Мп в M1 — Al в M1	-	Иохансенит и жа- деит		
метры	Разные <i>Т-</i> цепочки* и объемы ячейки		2-го рода (слабо изменепы размеры)	Пижонит и нижо- нит		

* По степени вытянутости.

кусственно при ударном сжатии (уменьшение объема ячейки) и при отжиге (увеличение ее объема). Имеются и природные пироксены с необычно большим и малым объемом ячейки для данного их состава (Гинзбург, 1973).

Итак, у пироксенов главных вариаций их кристаллической структуры три: изменение сингонии, пространственной группы симметрии и параметров ячейки, а причин, которыми они обусловлены, две: замещение катионов и структурные превращения (см. табл. 5 и 6). Сходство результатов реакции структуры пироксенов на замещения катионов и на структурные превращения делает представление о кристаллохимии этих минералов более емким и гибким.

ЗАКЛЮЧЕНИЕ

1. В статье рассмотрено отражение результатов рентгеновского изучения пироксенов на представлении об их кристаллохимии. Критически обобщены литературные сведения по расшифровке структур 20 пироксенов.

2. У одинаковых катионов оказались разные межатомные расстояния в полиэдрах одного и другого типов. Средние межатомные расстояния воз-

растают в той же последовательности, какая установлена для средних радиусов ионов одноименных катионов.

3. Показаны изменения величины и формы полиэдров из-за замещения катионов, изменения строения полиэдрических цепочек со сменой сингонии или пространственных групп симметрии, а также геометрически трехмерная сопряженность вариаций размерности полиэдров и строения сложенных ими цепочек.

4. Из этих конкретных данных впервые сделан вывол о том, что подобные (схожие) преобразования структуры пироксенов могут явиться следствием как замещения катионов, так и структурных превращений. Среди последних указываются превращения, относимые ко второму роду, при которых параметры и объем ячейки изменяются без изменения состава и пространственной группы симметрии, что является новым для пироксенов.

5. Обращает внимание на себя то, что именно тонкие внутренние вариации размерности полиэдров, сочетания одно- и разноразмерных полиэдров в цепочках одного или двух типов внешне проявлены (в порядке кристаллографической значимости); в разных сингониях (их две) в разных пространственных группах симметрии (их семь) и в разных параметрах ячейки.

6. Подтверждено, что изменение сингоний и пространственных групп симметрии (+ параметров ячейки) происходит у пироксенов с сохранением общего типа их структуры. Это расширяет и углубляет понятие о кристаллохимии пироксенов как об общности не только с варьирующим составом, но и с варьирующей структурой.

Литература

Белов Н. В. XXI. Очерки по структурной минералогии. Очерк 131. — Мин. сборник

Львовск. ун-та, 1970, № 24, вып. 2. Гинзбург И. В. О структурном типоморфизме пироксенов (исходя из объема элемен-тарной ячейки). — Труды Минерал. музея АН СССР, 1973, вып. 22.

Brown W. L. La symetrie et les solutions solides des clinopyroxenes. - Bull.Soc. franç.

min. crist., 1972, 95, № 5. Burnham C. W., Clark J. R., Papike J. J., Prewitt C. T. A proposed cristallographic nomenclature for clinopyroxene structures. - Z. Krist., 1967, 125.

Clarc I. R., Appleman D. E., Papike J. J. Bonding in eight ordered clinopyroxenes isostructural with diopside. — Contrib. Min. Petrol., 1968, 20.
 Clark J. R., Appleman D. E., Papike J. J. Crystal-chemical characterization of clinopyro-

xenes based on eight new structure refinements. — In: «Pyroxenes and amphiboles crystal chemistry and phase petrology». Min. Soc. Amer., Spec. Papers, No 2 1969. Moritoro N., Koto K. The crystal strukture of orthoenstatite. — Z. Krist., 1969, 129,

H. 1/4.

Sadanaga R., Okamura F. P. On the high-clino phase of enstatite. — Min. J., 1971, 6. No 5. Zussman J. The crystal chemistry of pyroxenes and amphiboles. I. Pyroxenes. —Earth Sci. Rev., 1968. 4, No 1.