Особенно четко это видно на примере Алакитского поля: все трубки, расположенные в верховьях ручья Веселого (Магистральная, Искорка, Светлая и др.) обнаруживают низкое содержание оливина 1-й генерации, а трубки северной части поля (Маршрутная и соседние с ней) высокое содержание. Для ручья Веселого среднее по 6 изученным объектам — 7,1% при колебаниях от 5,4 до 9,1% (на «собственно кимберлитовый» материал — от 5,6 до 10,7%); тогда как для северной группы трубок среднее по 7 объектам — 18,6% при вариациях от 14,1 до 23,3% (при пересчете — от 14,3 до 23,5%).

Для некоторых кимберлитовых трубок выполненный подсчет подтверждает соображения о сложном строении (трубка Зимняя Далдынского поля).

Выводы

1. Крупность и содержание оливина 1-й генерации позволяют различать блоки в сложных кимберлитовых трубках. В частности, по крупности оливина установлено сложное строение восточной части трубки Снежинка, не выявлявшееся другими методами.

2. Сложный характер гистограмм крупности оливина говорит о двух (или более) источниках оливина в кимберлитах.

3. Взаимосвязь между размерами наиболее крупных желваков оливина, пиропа, ильменита и слюды согласуется с гипотезой протомагматической кристаллизации всех этих минералов.

4. В пределах Алакитского кимберлитового поля выделены группы трубок с определенными уровнями содержаний оливина 1-й генерации: 5—9% для одного участка, 14—23% для другого.

Считаю своим приятным долгом поблагодарить Н. С. Маковскую за помощь в обработке цифрового материала.

ЛИТЕРАТУРА

- Бобриевич А. П., Илупин И. П., Козлов И. Т., Лебедева Л. И., Панкратов А. А., Смирнов Г. И., Харькив А. Д. Петрография и минералогия кимберлитовых попол Якутии. «Недла», 1964.
- пород Якутии. «Недра», 1964. 2. Илупин И. П. О химико-минералогических различиях последовательных фаз внедрения кимберлитов.— Геол. и геофиз., 1972, № 2.
- 3. Илупин И. П., Лебедев А. А. Субвулканическая фация кимберлитов.— Сов. геол., 1963, № 9.
- 4. Сарсадских Н. Н., Ровша В. С., Благулькина В. А. Минералы включений пироповых перидотитов в кимберлитах Далдыно-Алакитского алмазоносного района.— В кн.: Материалы по изучению алмазов и алмазоносных районов СССР. (Труды ВСЕГЕИ, нов. сер., вып. 40). Л., 1960.
- Смирнов Г. И. Протомагматическая стадия минералообразования в кимберлитах.— Геол. и геофиз., 1970, № 12.

В. А. КАЛЮЖНЫЙ, Р. П. СЛИВКОВА, Г. М. ФИРЕР

О СЕПИОЛИТЕ ИЗ КАМЕННОУГОЛЬНЫХ ТОЛЩ ЮГО-ЗАПАДНОГО ПРИТИМАНЬЯ

В Нившерском районе были пробурены три скважины с поинтервальным отбором керна. В одной из скважин (№ 183) в интервалах глубин 867,6—872,0 м впервые на северо-востоке Русской платформы был пересечен прослой сепиолита мощностью 0,20 м. Стратиграфически он при-

Рис. 1. Тонковолокнистая структура кристаллов нившерского сепиолита. Без анализатора, увел. 180, обр. 2398

урочен к подольско-мячковскому горизонту (C_2). В кровле его залегает серый с коричневатым оттенком, скрытокристаллический доломит, участками загипсованный, с включениями ангидрита. В подошве сепиолитового прослоя светло-серые органогеннообломочные доломитизированные известняки.

Ниже разрез сложен доломитами, доломитизированными органогенно-обломочными известняками с включениями и прослоями гипса и ангидрита с редкими прослоями известковистых глин.

Разрез показал стратиграфически датированные нижний карбон (интервалы глубин 1016—1100 м) и франский ярус верхнего девона (интервалы глубин 1100—1274 м), покрывающие с большим разрывом во времени верхнерифейские доломитизированные известковистые породы, предположительно сопоставляемые с быструхинской свитой верхнего рифея Среднего Тимана.

Образец сепиолита в сухом виде имеет восковидный облик; он желтоватый по цвету, тонколистоватый (толщина слойков 1,5—2 мм), жирный, на ощупь с шершавой поверхностью, минерал слабо прилипает к языку, ноготь пальца при очень слабом нажиме оставляет черту. Он без усилий растирается в муку розовато-кремового цвета. При действии на сепиолитовую породу слабой соляной кислотой выделяются единичные пузырьки, указывающие на присутствие карбоната.

В шлифах под микроскопом минерал однороден, с тонким волокнистым строением (рис. 1). Волокна хорошо линейно ориентированы в одном направлении. Местами среди волокнистой массы иногда наблюдаются мелкие включения кальцита и халцедона. Интерференционная окраска сепиолита серовато-желтоватая, погасание волокнистых кристаллов прямое. В сходящем свете минерал дает фигуру двуосного кристалла $2V = \sim 50^{\circ}$, оптический его знак отрицательный, знак удлинения положительный, показатели преломления по Ng' = 1,518, по Np' = 1,509; Ng' - Np' = 0,009. По этим свойствам он отнесен к сепиолиту.

Рентгенографические исследования, проведенные А. С. Анисимовой, дали дебаеграмму, тождественную эталону парасепиолита (табл. 1).

J	d/n	Парасепиолит [1]		J	d/n	Парасепиолит [1]		J	d/n	Парасепиолит [1]	
		J	d/n			J	d/n			J	d/n
1 0 ш. р,	11,8	9	12,3			9	2,55	4	1,579	3	1,58
2	7,5	3	7,52	4	2,45	6	2,44	3	1,550	3	1,55
2	6,7	3	6,75	1	2,40	3	2,38	5	1,515	3	1,51
1	5,71			7	2,26	6	2,25			3	1,49
2	4,98	3	5,02	1	1,19	3	2,18	1	1,468	3	1,46
		3	4,51	1	2,14	3	2,11	1	1,435	3	1,43
7ш	4,33	9	4,29	5	2,05	3	2,05	3	1,398	3	1,40
7	3,70	6	3,75	1	1,946	3	1,95	1	1,365		
2	3,50	3	3,53	3	1,867	3	1,86	1	1,336	3	1,34
6	3,29	6	3,35	1	1,792			5	1,298	3	1,29
5	3,16	6	3,18	2	1,741	3	1,72	5	1,282	3	1,27
2	3,04	3	3,04	4	1,694	3	1,69	1	1,259	3	1,25
5	2,87	3	2,82	1	1,633	3	1,66	1	1,238		
8ш	2,56	6	2,61								

Таблица 1 Результаты рентгенометрического анализа Нившерского образца сепиолита

ИК-спектр нившерского сепиолита, по Е. С. Рудницкой, характеризуется интенсивной полосой поглощения в области 1050—950 см⁻¹, соответствующей валентным колебаниям тетраэдров SiO₄. Максимум полосы раздвоен. Положение пиков соответствует 1020 и 960 см⁻¹. На высокочастотном плече основной полосы наблюдается узкий четкий максимум у 1200 см⁻¹. К низкочастотному плечу основной полосы примыкает хорошо выраженный дуплет 700—650 см⁻¹ и интенсивная полоса с максимумом 485—493, относящаяся к деформационным колебаниям связей Si—O в тетраэдрах SiO₄.

ИК-спектр этого же минерала показал широкую область валентных колебаний группы ОН с максимумами 3685, 3655, 3635 и 3570 см⁻¹, с сильными водородными связями, различающимися по энергетическим уровням. Широкая полоса с максимумом 3400 см⁻¹ области валентных колебаний группы ОН и более интенсивная полоса с максимумом 1645 см⁻¹ в области деформированных колебаний указывают на наличие в образце кристалла молекулярной воды (H₂O).

Кривая ДТА сепиолита показала эндо- и экзоэффекты (рис. 2). Эндоэффект в области 150° отвечает удалению низкотемпературной молекулярной воды. Незначительный по глубине эндоэффект отмечен при 370°. Он остался нерасшифрованным. Такой температуры эндоэффект может указывать на присутствие гиббсита. Алюминий в слабокислых условиях и до слабощелочной среды легко гидролизуется и выпадает в виде гелевидной формы белого осадка Al(OH)₃. Но в нашем образце гиббсит не был обнаружен.

Более глубокий эндоэффект в интервалах 780—790° определяет выделение ОН, судя по ИК-спектрам его непосредственный переход в экзотермический эффект при 800—805°, характеризует полное разрушение кристаллической решетки сепиолита.

Данные кривых ДТА сепиолитов трех районов СССР сходны (табл. 2).

Химические исследования сепиолита. На химический анализ и для других анализов минерал был просмотрен под лупой на его чистоту. Однако результаты химического анализа (табл. 3) и проведенные по принятому методу [4] их пересчеты показали, что в сепиолите в незначительных количествах присутствуют примеси других минералов. В расчетах CaO и CO₂ были отнесены к кальциту по CO₂. Одна часть оставшейся CaO была связана с SO₃ (по содержанию общей серы, пересчитанной на SO₃) в молекулу гипса на том основании, что отложения сепиолита заключены в породах, содержащих гипс. Вторая — оставшаяся часть CaO—0,13% отнесена к сорбированной (в анализах глин избыток кальция именуется обменным). Щелочи и глинозем отнесены к мусковиту (расчет сделан по алюминию). Избыточная часть Na₂O— 0,29%, по-видимому, является погрешностью анализа. Количество SiO₂, входящего в формулу сепиолита в молекулярных значениях были вычислены путем умножения атомного числа кремния на величину делителя. Свободный кварц составил 3,59%.

Рис. 2. Кривые дифференциального термического анализа. Нижняя линия характеризует выделения воды. Потеря веса составила 23,4%, обр. 2398

Таблица 2 Сравнительные данные результатов ДТА сепиолитов трех районов

Район	3	Экзоэффекты		
Нившерский р-он, Западное Прити- манье Верхне-Уфалейский р-н Урал [2,3] Южный Урал [3]	150 95—150 110—120	370 410 слаб.	780—790 730—790 780—790	800805 790830 830

После вычитания минералов-примесей (под микроскопом были установлены лишь кальцит и кварц) с учетом данных ИК-спектра в отношении ОН и Н₂О и кривой ДТА была получена структурная формулнившерского сепиолита:

 $(Mg_{2.94}Fe_{0.06})_3 \cdot Si_4O_{11} (OH)_6 \cdot 4,06 H_2O.$

Соотношение молекулярных количеств

$$\frac{\text{FeO} + \text{MgO} + \text{Fe}_2\text{O}_3}{\text{SiO}_2} = 0,750$$
или 3:4.

Формула сепиолита по [9] Mg₃(OH₂)₃·Si₄O₁₁·H₂O, а по кристаллической структуре сепиолит аналогичен атапульгиту. Параметры ячейки сепиолита [3] $a_0 = 13,4$ Å, $b_0 = 27,2$ Å; $c_0 = 5,32$ Å.

Элементы-примеси, входящие в состав нившерского сепиолита, были исследованы Ал. Ф. Мартыновой методом спектрального анализа в следующих количествах (%): Li—2,10⁻², Ti—2,10⁻², Sr—4,10⁻³, Cr—4,10⁻³, La—2,10⁻³, Y—2,10⁻³, Ni—2,10⁻³, Mn—2,10⁻⁴, Mo—2,10⁻⁴, Cu—2,10⁻⁴.

Обсуждение

К настоящему времени сепиолит установлен в ряде мест СССР: на Урале, в Узбекистане, на Северном Кавказе, в Пермском Прикамье и других пунктах.

Таблица 3

	Bec.%	Атомные количества	1	Вычитан	ие примесе		Атомное коли-	
Окислы			Қаль- цит	Гипс	Мусковит	Кварц	Число катионов	чество катно- нов, входящих в формулу
SiO ₂	49,95	831,7			63,2	59,7	4	708,8
TiO_2	Сл.				,			
Al_2O_3	1,10	21,6			21,6			
Fe ₂ O ₃	0,68	8,5					0,05	8,5
FeO	0,14	2,0					0,01	2,0
MgO	21,00	521,1			1		2,94	521,1
CaO	1,40	25,0	$18,4^{+}$	4+				
Na ₂ O	0,84+	27,0			17,8			
K ₂ O	0,18+	3,8			3,8			
V_2O_5	0,02							
Cr_2O_3	Сл.							
S (общ.)	0,12	4		4+				
CO_2	0,82 ^{3*}	18,4	18,4					
H ₂ O+	10,00 ^{3*}	1111,1			43,2		6,03	1067,9
H_2O^-	13,5 ³ *	1460,0		8			8,12	1452
Rb_2O	$0,0015^{2*}$							

Химический состав нившерского сепиолита и результаты его пересчета на структурную формулу

Примечание. Делитель 177,22. Аналитик Е. А. Ешуткина. Из отдельной навески раствора сделаны определения: * — щелочи (фотометр пламени), аналитик Е. Л. Бородина; ^{2*} — аналитик Г. Е. Калинчук; ^{3*} — аналитик Р. С. Яшина; + — объяснение дано в тексте.

В осадочных породах сепиолит встречен среди карбонатных известковисто-доломитовых отложений алексинского горизонта нижнего карбона в районе Красной Поляны [6], а также в нижнепермских карбонатных отложениях Казанского Поволжья [7]. В Пермском Прикамье сепиолит был пересечен скважинами в нижнепермских доломитах и известковисто-доломитовых отложениях кунгурского яруса [8]. Мощность сепиолитсодержащих доломитов колеблется от десятков сантиметров до 6,0 м. В Верхне-Уфалейском районе сепиолит развит по контакту зеленокаменных пород и серпентинитов [2].

Генезис сепиолита обычно связывают с корами выветривания серпентинитов, оливинитов и других типов магматических пород богатых магнием. На Нившере он связан с хемогенными осадочными образованиями известково-доломитового состава в период обогащения раствора кремнекислотой в условиях щелочной среды при рН>10. Процессы эти, по-видимому, протекают по схеме: 2CaCO₃+3MgCO₃+4SiO₂+9H₂O→ →[(Mg₃Si₄O₁₁(OH)₆)]·4H₂O+2Ca(HCO₃)₂+CO₂. В сепиолите изменчиво количество низкотемпературной воды и этим объясняется различие формул минерала.

Сепиолитовые руды используются главным образом как высококачественное огнеупорное сырье. Поскольку в Восточном Притиманье Южного Тимана и в приполярной части Западного Приуралья отмечаются выходы осадочных доломитов и известковистых доломитов, похожих по содержанию гипса и агидрита на те, в которых нами встречен сепиолит, их желательно обследовать на сепиолитовые глины.

- 1. Михеев В. И. Рентгеноструктурный определитель. Госгеолтехиздат. 1957.
- Жуйкова Н. П. Сепиолиты коры вывет-ривания серпентинитов.— Труды ГИН УФАН СССР, вып. 20, 1953. 3. Гинзбург И. Н., Рукавишникова И. А.
- Минералы древней коры выветривания Урала. Изд-во АН СССР, 1951.
- 4. Борнеман-Старынкевич И. Д. Руководство по расчету формул минералов. «Наука», 1964. 5. *Чухров Ф. В.* Коллонды в земной коре. Изд-во АН СССР, 1955.
- 6. Ратеев М. А. Сепиолит из карбонатных

пород алексинского горизонта Красной поляны. — Докл. АН СССР, 1954, 96. **№** 5.

- 7. Ковеев М. С. Находка сепиолитов в нижнепермских отложениях Казанского Поволжья. - Зап. Всесоюз. минер. о-ва, ч. 89, вып. 3, 1960.
- 8. Старков Н. П. Сепиолит из кунгурских отложений Прикамья.— Зап. Всесоюз. минер. о-ва, ч. 92, вып. 4, 1963.
- 9. Звягин Б. Б., Мищенко К. С., Ши-пов. Электроннографические данные о структурах сепиолита и палыгорскита. Кристаллография, 1963, 8, N 2.

Г. А. АННЕНКОВА, Т. Н. ИВАНОВА

К ОПТИКЕ АЛАИТА¹

В 25 выпуске сборника «Новые данные о минералах СССР» опубликована заметка об алаите. К сожалению, в ней допущена опечатка в величине показателя преломления: напечатано $n \sim 1,714$ вместо $n \sim 1,774$. Поскольку эта константа впервые определена для алаита, считаем необходимым внести соответствующие исправления, тем более, что за прошедшие годы (статья была сдана в редакцию в 1974 г.) на кафедре минералогии МГУ удалось измерить величину наибольшего показателя преломления в мышьяковых жидкостях. Таким образом, показатели преломления алаита: $n_p \simeq 1,774 \pm 0,05$ и $n_g \ge 2,06 \pm 0,05$; n_m определить не удалось из-за тонины волокон алаита (диаметр волокон 2-3 микрона).

Г. А. Анненкова, Н. И. Органова, Е. С. Рудницкая, А. Н. Платонов, М. Г. Добровольская, А. Л. Дмитрик. Алант из фондов Минералогического музея АН СССР.--В кн.: «Новые данные о минералах СССР», вып. 25. «Наука», 1976.