Cerchiaraite-(Fe) and cerchiaraite-(Al), two new barium cyclosilicate chlorides from Italy and California, USA

A. R. $Kampf^{1,\ast},$ A. C. $Roberts^2,$ K. E. $Venance^2,$ C. $Carbone^3,$ D. $Belmonte^3,$ G. E. $Dunning^4$ and R. E. Walstrom^5

- ¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
- ² Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
- ³ DISTAV, Università degli Studi di Genova, Corso Europa 26 16132 Genova, Italy
- ⁴ 773 Durshire Way, Sunnyvale, California 94087, USA
- ⁵ P.O. Box 1978, Silver City, New Mexico 88062, USA

[Received 2 October 2012; Accepted 6 January 2013; Associate Editor: G. Diego Gatta]

ABSTRACT

The ideal formula for members of the cerchiaraite group is $Ba_4M_4(Si_4O_{12})O_2(OH)_4Cl_2[Si_2O_3(OH)_4]$, where M represents Mn^{3+} , Fe^{3+} or Al in the octahedral site. A suffix-based naming scheme is used in which the original cerchiaraite is renamed cerchiaraite-(Mn) and two new minerals are named cerchiaraite-(Fe) and cerchiaraite-(Al). The type localities for cerchiaraite-(Fe) are the Cerchiara mine, Liguria, Italy and the Esquire No. 7 and No. 8 claims, Big Creek, Fresno County, California, USA. The type localities for cerchiaraite-(Al) are the Esquire No. 1 claim, Rush Creek, Fresno County, California, USA and the Esquire No. 7 and No. 8 claims noted above. At the Cerchiara mine, cerchiaraite-(Fe) occurs in small fractures and veinlets in a Jurassic ophiolitic sequence. It is of secondary hydrothermal origin and occurs as tan to brown thin prisms and matted fibres. Cerchiaraite-(Fe) and cerchiaraite-(Al) from the Esquire No. 1, No. 7 and No. 8 claims occur in parallel-bedded quartz-sanbornite vein assemblages which formed as a result of fluid interaction along the margin of the vein. At the Esquire No. 1, No. 7 and No. 8 claims, both cerchiaraite-(Fe) and cerchiaraite-(Al) occur as subparallel aggregates of blue to bluish green irregular prisms. Both minerals are transparent with a vitreous lustre, Mohs hardness $\sim 4\frac{1}{2}$, brittle tenacity, irregular fracture and no cleavage. The calculated density of cerchiaraite-(Fe) is 3.710 g cm⁻³; the measured density of cerchiaraite-(Al) is 3.69(3) g cm⁻³ and the calculated density is 3.643 g cm⁻³. Cerchiaraite-(Fe) is uniaxial (+), with ω = 1.741(2) and $\varepsilon = 1.768(2)$; it is weakly pleochroic and O is colourless and E is yellow. Cerchiaraite-(Al) is uniaxial (-), with $\omega = 1.695(2)$ and $\varepsilon = 1.677(2)$; it is strongly pleochroic and O is colourless and E is blue. Electron-microprobe analyses yielded empirical formulae ranging from $(Ba_{3.82}Na_{0.02}Ca_{0.04})_{\Sigma 3.88}(Fe_{3.42}^{3+}Ti_{0.27}^{4+}Al_{0.25}^{3+}Mn_{0.04}^{3+}Mg_{0.02})_{\Sigma 4.00}Si_{5.62}O_{15.47}(OH)_{9.31}Cl_{2.22} \quad (Cerchiara 10.15)_{1.21}Cl_{1.22} \quad (Cerchiara 10.15)_{1.22}Cl_{1.22} \quad (Cerchiara 10.15)_{1.22}Cl_{1.22} \quad (Cerchiara 10.15)_{1.22}Cl_{1.22}Cl_{1.22} \quad (Cerchiara 10.15)_{1.22}Cl$ mine) to $Ba_{4,00}(Al_{2,40}^{3}Fe_{1,12}^{0,1}Mg_{0,15}Fe_{0,12}^{0,1}Mn_{0,0}^{0,0}\Sigma_{3,85}Si_{5,78}O_{15,34}(OH)_{8,75}Cl_{2,91}$ (Esquire No. 1 claim). Cerchiaraite is tetragonal with Z = 2 and crystallizes in space group I4/mmm. The cell parameters for cerchiaraite-(Fe) are a = 14.3554(12), c = 6.0065(5) Å and V = 1237.80(5) Å³; those for cerchiaraite-(Al) are a = 14.317(4), c = 6.0037(18) Å and V = 1230.6(6) Å³. In the cerchiaraite-(Fe) structure, SiO₄ tetrahedra share corners forming a four-membered Si₄O₁₂ ring. The ring is corner-linked to an edgesharing chain of Fe³⁺O₆ octahedra running parallel to c. A Cl site alternates along c with the Si₄ O_{12} ring. A large channel in the framework contains Ba atoms around its periphery and statistically distributed Si₂O₇ silicate dimers and Cl atoms. The strong blue pleochroic colour is attributed to $Fe^{2+}-Fe^{3+}$ intervalence charge transfer along the octahedral chain.

* E-mail: akampf@nhm.org DOI: 10.1180/minmag.2013.077.1.07 **Keywords:** cerchiaraite-(Fe), cerchiaraite-(Al), cerchiaraite-(Mn), new mineral, crystal structure, cyclosilicate, electron microprobe analysis, intervalence charge transfer, Big Creek – Rush Creek, Fresno County, California, USA, Cerchiara mine, Liguria, Italy.

Introduction

THE sanbornite deposits which are located along Big Creek and Rush Creek (Walstrom and Leising, 2005) in Fresno County and at Trumbull Peak (Dunning and Cooper, 1999) in Mariposa County, California, USA, have vielded a wealth of exotic minerals, including 17 new species. The first of these, sanbornite, was described by Rogers (1932) from Trumbull Peak; fencooperite was described from the same locality by Roberts et al. (2001). Seven of the new species, namely fresnoite, krauskopfite, macdonaldite, muirite, traskite, verplanckite and walstromite, were described from Big Creek and Rush Creek by Alfors et al. (1965), these were followed by alforsite (Newberry et al., 1981), titantaramellite (Alfors and Pabst, 1984), bigcreekite (Basciano et al., 2001a), kampfite (Basciano et al., 2001b), devitoite (Kampf et al., 2010) and ferroericssonite (Kampf et al., 2011). In this paper, we report the two new minerals, cerchiaraite-(Fe) and cerchiaraite-(Al), from Big Creek and Rush Creek.

When they were discovered at the deposits along Big Creek and Rush Creek by one of the authors (REW) in the mid-1960s, the new minerals described herein were thought to be a single phase, which was referred to as 'mineral 10'. Following the description of cerchiaraite from the historic Cerchiara mine in the northern Apennines, Italy, by Basso *et al.* (2000), the similarity of 'mineral 10' to cerchiaraite was recognized by comparing their X-ray powder diffraction data. Subsequent investigations have demonstrated that 'mineral 10' corresponds to two species with identical frameworks, the Fe³⁺- and Al-analogues of cerchiaraite. The research has also shown that the Fe³⁺-analogue occurs at the Cerchiara mine.

The cerchiaraite group is therefore made up of three species and in accordance with Mills *et al.* (2009) they have been named using a suffix-based scheme in which cerchiaraite is the root name and the single suffix corresponds to the dominant cation (Mn, Fe or Al) in the octahedral site. The original cerchiaraite described by Basso *et al.* (2000) is renamed cerchiaraite-(Mn) and the two new minerals, described herein, are cerchiaraite-(Fe) and cerchiaraite-(Al). The new minerals (IMA 2012-012 and IMA 2012-011, respectively), their names and the new name for the original cerchiaraite have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association.

The descriptions of the new minerals are based upon five cotype specimens deposited at the Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. A specimen from the Esquire No. 1 claim, which contains crystals with compositions that are all in the Al-dominant range, has been assigned catalogue number 63519 and is referred to as 'Esq1'. Specimens from the Esquire No. 7 and No. 8 claims, which contain crystals representing both Fe- and Al-dominant compositions, have been assigned catalogue numbers 63517 and 63518 and are referred to as 'Esq7' and 'Esq8', respectively. Specimens from the Cerchiara mine have been assigned catalogue numbers 63517 and 63518 and are referred to as 'Cer1' and 'Cer2', respectively. Crystals from Cerl have compositions close to the Fe endmember: crystals from Cer2, are Fe-dominant and exhibit significant substitution of Mn for Fe.

Occurrence and paragenesis

Cerchiaraite-(Fe) occurs at the Cerchiara mine, Borghetto Vara, Vara Valley, La Spezia Province, Liguria, Italy and at the Esquire No. 7 and No. 8 claims, Big Creek, eastern Fresno County, California, USA. The locations of the claims are as follows: Esquire No. 7 is at SE¹/₄ SE¹/₄, Section 27, T11S., R25E., Mount Diablo Meridian, 36°56'40"N, 119°14'28"W; Esquire No. 8 is at SE¹/₄ SW¹/₄, Section 22, T11S., R25E., Mount Diablo Meridian, 36°56'42"N, 119°14'12"W. Cerchiaraite-(Al) occurs at the Esquire No. 1 claim, Rush Creek, eastern Fresno County, California, USA [which is located at NE¹/₄ NW¹/₄, Section 16, T11S., R25E., Mount Diablo Meridian, 37°05'N, 119°16'20"W] and also at the Esquire No. 7 and No. 8 claims, noted above. These are considered to be the type localities.

At the Cerchiara mine, cerchiaraite-(Fe) occurs in small fractures and veinlets within the metacherts of a Jurassic ophiolitic sequence. Associated minerals include aegirine, calcite, Mn-bearing diopside (variety schefferite), hematite, K-feldspar, norrishite and quartz. The occurrence is very similar to that of cerchiaraite-(Mn), which is described in detail by Basso *et al.* (2000). The new mineral is of secondary hydrothermal origin, related to re-equilibration of the ophiolitic sequences during tectonometamorphic overprinting (~80 Ma) in prehnitepumpellyite facies conditions (P = 2-3 kbar, $T = 250-300^{\circ}$ C) (Lucchetti *et al.*, 1988). The occurrence of cerchiaraite-(Fe) in metapelites in the cherts suggests a sedimentary and/or diagenetic barium enrichment, followed by hydrothermal mobilization and concentration processes along fractures (Cabella *et al.*, 1993).

The samples of cerchiaraite-(Fe) and cerchiaraite-(Al) from the Esquire No. 1, No. 7 and No. 8 claims were collected during the mid-1960s by one of the authors (REW). The mineral is found in parallel-bedded quartz-sanbornite vein assemblages. At the Esquire No. 1 claim, cerchiaraite-(Al) is associated with bazirite, diopside, goethite, opal, quartz, sanbornite, titantaramellite, traskite and witherite. At the Esquire No. 7 claim, cerchiaraite-(Fe) and cerchiaraite-(Al) are associated with bazirite, diopside, muirite, pyrrhotite, Ba-rich tobermorite, traskite and witherite. At the Esquire No. 8 claim, they are associated with bazirite, calcite, diopside, pyrrhotite, titantaramellite and Ba-rich tobermorite. A description of the mineralogy of the sanbornite deposits located along Big Creek and Rush Creek in eastern Fresno County, California is provided by Walstrom and Leising (2005). The mineral formed on the margins of quartz-sanbornite veins as a result of fluid interactions. The environment in which the cerchiaraite phases occur at the Esquire No. 1, No. 7 and No. 8 claims appears to have been less oxidizing than at Cerchiara mine, based upon the pleochroic blue colour of the Esquire crystals (see below).

The new minerals have also been found at Trumbull Peak, Mariposa County, California, USA (Dunning and Cooper, 1999), the Baumann prospect, Chickencoop Canyon, Tulare County, California, USA (Walstrom and Dunning, 2003) and the Gunn claim, MacMillan Pass, Yukon Territory, Canada (the type locality for pellyite; Montgomery *et al.*, 1972). Material from all three localities has compositions between the Fe and Al endmembers, although all of the samples tested thus far from Trumbull Peak fall into the Fedominant range. Material from the Gunn claim has been referred to as 'mineral C'.

FIG. 1. Cerchiaraite-(Fe) with hematite (upper right) from the Cerchiara mine (specimen Cer1); field of view is 3 mm.

Physical and optical properties

At the Cerchiara mine, cerchiaraite-(Fe) occurs as tan to brown thin prisms with square crosssections. Near-endmember cerchiaraite-(Fe) (Cer1) occurs as matted aggregates of very thin tan fibres (Fig. 1); more Mn-rich cerchiaraite-(Fe) (Cer2) occurs as coarser brown crystals reaching 2 mm in length and 0.1 mm across. The streak varies from nearly colourless to tan. At the Esquire No. 1, No. 7 and No. 8 claims, both cerchiaraite-(Fe) and cerchiaraite-(Al) occur as blue, greenish blue and bluish green irregular prisms in subparallel crystal aggregates which are generally less than 1 mm across (Figs 2 and 3). The streak is pale green-blue.

FIG. 2. Cerchiaraite-(Fe)-cerchiaraite-(Al) with pyrrhotite (brown metallic), muirite (yellow), traskite (orange) and diopside (nearly colourless) embedded in witherite from the Esquire No. 7 claim; field of view is 3 mm.

FIG. 3. Cerchiaraite-(Fe)-cerchiaraite-(Al) with pyrrhotite (brown metallic), tobermorite (white silky) and diopside (pale yellow) embedded in calcite from the Esquire No. 8 claim; field of view is 3 mm.

Cerchiaraite-(Fe) and cerchiaraite-(Al) crystals are transparent and have a vitreous lustre. They do not fluoresce in long-wave or short-wave ultraviolet light. Their Mohs hardness is about 41/2, their tenacity brittle, their fracture irregular and they exhibit no cleavage. The density of the nearendmember cerchiaraite-(Fe) crystals on Cer1 could not be measured because of difficulty in working with the very thin fibres. The calculated density for these crystals is 3.710 g cm^{-3} , based on the empirical formula and the unit-cell dimensions determined by single-crystal X-ray diffraction. The density of cerchiaraite-(Al) crystals on specimen Esq1 determined by the sink-float technique in an aqueous solution of sodium polytungstate is 3.69(3) g cm⁻³; the calculated density is 3.643 g cm⁻³, based on the empirical formula and unit-cell dimensions refined from powder-diffraction data.

The optical properties of cerchiaraite-(Fe) and cerchiaraite-(Al) were measured in white light. Cerchiaraite-(Fe) is uniaxial (+), with $\omega = 1.741(2)$ and $\varepsilon = 1.768(2)$; it is weakly pleochroic, with O colourless and E yellow. Cerchiaraite-(Al) is uniaxial (-), with $\omega = 1.695(2)$ and $\varepsilon = 1.677(2)$; it is strongly pleochroic with O colourless and E blue.

Chemical composition

Chemical analyses were carried out on a Cameca SX-50 electron microprobe (EMP) fitted with four wavelength-dispersive spectrometers operating in WDS mode at 15 kV, 10 nA with a 5 μ m beam

diameter. The acquisition times were 10 s on the peak and 5 s on the low and high background positions. Data were reduced, with a ZAF matrix correction (Armstrong, 1988), using *Probe for Windows* software. A variety of natural and synthetic minerals and metals were used as standards.

Insufficient material was available for a direct determination of H₂O, which was calculated by stoichiometry based upon 27 anions (O + Cl = 27)such that there were no more than four cations in either the large cation sites (Ba + Na + Ca = 4) or the octahedral site (Fe + Al + Mn + Mg + Ti = 4). Analytical data for samples Cer1, Cer2, Esq1, Esq7 and Esq8 and the corresponding empirical formulae are given in Table 1. The presence of a small amount of Fe^{2+} in samples from the Esquire claims is revealed by the strong blue pleochroism of the crystals. On the basis of bond-valence analysis (see below) Fe in the structure was allocated as 90% Fe^{3+} and 10% Fe^{2+} . The presence of Fe²⁺ indicates that all of the Mn must be Mn^{2+} in the Esquire samples. The low analytical total for Cer1 is due to the very limited thickness of the crystals.

The atom percentages of Mn, Fe and Al in the studied specimens, and in cerchiaraite-(Mn) (labelled Cer0; Basso *et al.*, 2000), are plotted in Fig. 4. The composition of cerchiaraite from the Cerchiara mine varies between the Mn and Fe endmembers and contains relatively little Al. The compositions from the three Esquire claims are low in Mn and cover a broad range on either side

FIG. 4. Ternary plot of cerchiaraite compositions based upon atom% Mn, Fe and Al. The compositions labelled 'Cer0' correspond to those of the original Mn-dominant cerchiaraite of Basso *et al.* (2000).

t.%)] SD	00 U		0.06	0.17		0.90			0.60		0.50	0.18			
[11 analyses (w Range	43 21-46 09	10:01 17:CL	0.12 - 0.31	0.16 - 0.74		8.63-11.49			6.40 - 8.14		24.61 - 26.14	6.48 - 6.92			
Esq8 Mean	44.84		0.21	0.38		(06.6)	0.89	8.91	7.22		25.15	6.73	-1.52	6.24	99.05
t.%)] SD	1 08	00.1	0.04	0.50		1.76			0.92		0.30	0.31			
18 analyses (w Range	41 80-45 75		0.06 - 0.18	0.18 - 1.69		9.62 - 14.99			3.77 - 6.81		24.29-25.37	6.50 - 7.41			
Esq7 [Mean	43.85	C0.0+	0.12	1.09		(11.44)	1.08	10.30	5.74		24.90	6.89	-1.55	5.81	98.23
t.%)] SD	0 95	00	0.08	0.07		0.88			0.59		0.29	0.18			
11 analyses (w Range	43 75-46 91		0.35 - 0.59	0.20 - 0.44		5.58 - 8.25			8.12 - 9.79		25.25-26.22	7.35-7.94			
Esq1 [Mean	44.87	70.11	0.43	0.30		(7.27)	0.65	6.55	8.94		25.38	7.53	-1.70	5.76	98.66
%)] SD	0.08	0.02	0.01		0.68	0.57			0.06	0.17	0.62	0.18			
[8 analyses (wt Range	0.00-0.21	0.00-0.05	0.01 - 0.04		5.74 - 8.03	12.77 - 14.46			0.18 - 0.34	0.68 - 1.20	24.10 - 25.82	4.77 - 5.36			
Cer2 Mean	0.09 41.65	0.03	0.02		6.96	13.82			0.28	1.02	25.16	5.07	-1.14	5.07	98.03
wt.%)] SD	0.05	0.13	0.05		0.18	0.59			0.66	0.17	0.26	1.05			
10 analyses (Range	0.00-0.13	0.03-0.42	0.00 - 0.13		0.04 - 0.46	18.25 - 20.26			0.74 - 0.94	0.52 - 2.25	23.26 - 23.83	5.13 - 5.98			
Cerl [Mean	0.05	0.17	0.06		0.22	19.03			0.87	1.51	23.51	5.47	-1.23	5.84	96.31
Const.	a_2O	aO	4gO	AnO*	An_2O_3	e2O3	e0*	e2O3*	M_2O_3	10_2	iO_2	П)=CI	I_2O	otal

TABLE 1. Analytical data for cerchiaraite-(Fe) and cerchiaraite-(Al).

* The presence of a small amount of Fe^{2+} in samples from the Esquire claims is indicated by the strong blue pleochroism; based upon the bond-valence analysis Fe has been allocated as 90% Fe³⁺ and 10% Fe²⁺; furthermore, the presence of Fe²⁺ indicates that all Mn must be present as Mn^{2+} .

 $\begin{array}{l} \label{eq:constraint} \mbox{Empirical formulae (based on 27 anions):} \\ \mbox{Cer1: (Ba_{3,82}Na_{0.02}Ca_{0.04})_{23,88}(Fe_{3,42}^{-116}Ti_{0,27}^{-27}Mn_{0,04}^{3+}Mn_{0,04}^{2}Mg_{0.02}^{-0})_{24,00}Si_{5,62}O_{15,47}(OH)_{9,31}Cl_{2.22} \\ \mbox{Cer2: (Ba_{3,88}Na_{0.04}Ca_{0.01})_{23,30}(Fe_{2,47}^{-2}Mn_{1,26}^{3+}Ti_{0,17}^{-18}Mn_{0,08}^{2}Mg_{0.01})_{24,00}Si_{5,98}O_{16,92}(OH)_{8,04}Cl_{2.04} \\ \mbox{Esq1: Ba_{4,00}(Al_{3,46}^{5}Fe_{1,2}^{-1}Mg_{0.15})_{25}(Mn_{0,06}^{-0,23},8sSi_{5,78}O_{15,34}(OH)_{8,75}Cl_{2.91} \\ \mbox{Esq1: Ba_{4,00}(Al_{3,46}^{-1}Fe_{1,2}^{-1}Mg_{0.15})_{21}(Mn_{0,06}^{-0,23},8sSi_{5,78}O_{15,24}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq2: Ba_{4,00}(Al_{3,54}^{-1}Fe_{0,21}^{-1}Mn_{0,27}^{-1}Mg_{0.07})_{23,78}Si_{5,73}O_{14,92}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,71}^{-1}Mn_{0,77}^{0,0}Mg_{0.07})_{23,78}Si_{5,53}O_{14,92}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,71}^{-1}Mn_{0,77}^{0,0}Mg_{0.07})_{23,77}Si_{5,73}O_{14,92}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,71}^{-1}Mn_{0,77}^{0,0}Mg_{0.07})_{23,77}Si_{5,73}O_{14,92}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,77}^{-1}Mn_{0,77}^{0,0}Mg_{0.07})_{23,77}Si_{5,73}O_{14,92}(OH)_{9,02}Cl_{2.72} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,77}^{-1}Mn_{0,77}^{0,0}Mg_{0.07})_{23,77}Si_{5,73}O_{14,92}(OH)_{9,48}Cl_{2.60} \\ \mbox{Esq8: Ba_{4,00}(Al_{3,54}^{-1}Fe_{1,55}^{-1}Fe_{0,77}^{-1}Mn_{0,77}^{0,0}Si_{5,73}^{-1,0}Si_{5,73}^{-1,0}Si_{5,75}^{-1,0}Si_{5,$

of the boundary between the Fe and Al endmembers; they do not approach the endmember compositions, extending between Fe:Al ratios of 75:25 and 25:75.

The ideal formula for members of the cerchiaraite group is $Ba_4M_4(Si_4O_{12})O_2(OH)_4Cl_2$ [Si₂O₃(OH)₄], in which *M* represents the cation in the octahedral site, which can be Mn, Fe or Al. The endmember formula for cerchiaraite-(Fe) requires BaO 43.19, Fe₂O₃ 22.49, SiO₂ 25.38, H₂O 5.07, Cl 4.99, O=Cl -1.13; total 100.00 wt.%. The endmember formula for cerchiaraite-(Al) requires BaO 47.01, Al₂O₃ 15.63, SiO₂ 27.63, H₂O 5.52, Cl 5.43, O=Cl -1.23; total 100.00 wt.%. Note that Basso *et al.* (2000) reported an ideal formula for cerchiaraite-(Mn) with only one Cl, even though their empirical formula included 1.54 Cl atoms per formula unit (a.p.f.u). All of our empirical formulae for cerchiaraite-(Fe) and cerchiaraite-(Al) (Table 1)

Iobs	$d_{\rm obs}$ (Å)	d_{calc} (Å)	I_{calc}	hkl	Iobs	$d_{\rm obs}$ (Å)	d_{calc} (Å)	I_{calc}	hkl
25	10.23	10.1366	40	110		1 5 4 2 0	(1.7384	6	820
17	7.21	7.1677	30	200	11	1.7439	1.7369	11	413
21	5.57	5.5466	39	101	16	1.6818	1.6811	8	552
7	5.09	5.0683	7	220	10		(1.6584	24	642
5	4.56	4.5332	9	310	19	1.6552	1.6431	18	503
26	4.403	4.3866	42	211	0		(1.6027	5	840
9	3.751	3.7415	11	301	9	1.6016	1.5956	7	732
19	3.593	3.5838	38	400			1.5831	5	910
		3.3789	7	330			1.5397	5	901
48	3.327	3.3168	73	321			(1.5054	7	761
18	3.214	3.2055	38	420	23	1.5062	1.5038	13	004
-		(3.0102	100	411			1.4936	9	543
/0	3.016	3.0075	19	002			(1.4733	7	851
8	2.887	2.8833	8	112	8	1.4755	1.4730	4	662
		(2.8114	12	510			1.4335	4	860
16	2.788	2.7733	21	202			(1.4147	17	941
100	0.505	(2.5881	59	501	10	1 4107	1.4049	14	723
100	2.595	2.5864	76	222	43	1.4107	1.4009	13	912
0	0.470	(2.5342	38	440			1.3924	6	950
8	2.470	2.4585	11	530			1.3866	5	404
		2.2666	4	620			1.3614	4	424
29	2.258	2.2465	35	332			1.3159	4	871
		2.1933	5	422			(1.3047	4	772
18	2.107	2.0982	33	541	29	1.2980	1.2941	16	10.0.2
10	2.024	(2.0538	9	512			1.2932	11	444
19	2.034	2.0273	11	550			(1.2735	5	10.2.2
		2.0137	6	631	14	1.2(00	1.2635	8	952
		1.9880	4	640	14	1.2609	1.2540	6	$11 \cdot 2 \cdot 1$
		1.9857	5	103			1.2540	9	10.5.1
•	1.007	(1.9136	7	213	-	1 21 (2	(1.2171	3	10.4.2
20	1.907	1.9035	4	532	7	1.2162	(1.2110	4	853
		(1.8823	17	730			(1.1784	7	12.2.0
26	1.880	1.8714	34	721	17	1.1796	1.1779	9	943
		1.8708	9	602			1.1749	6	734
		(1.8101	42	622					
39	1.8118	{ 1.7919	15	800					
		1.7903	10	323					

TABLE 2. Powder X-ray data for cerchiaraite-(Fe) (sample Cer1).

Only calculated lines with intensities of 4 or greater are listed, unless they correspond to observed lines. The calculated powder data are based on the structure refinement for Esq8.

have between two and three Cl a.p.f.u. We did not observe any evidence that Cl migration, such as that reported for F and Cl in apatite by Stormer *et al.* (1993), produced higher than actual Cl values in the EMP analyses. In the crystal structure (see below), one Cl a.p.f.u. is located at a fully occupied Cl site (Cl1) at the origin [0;0;0]. The additional Cl is located at a partially occupied channel site (Cl2) 0.8 Å from the partially occupied O5 site of the channel silicate group, leading to the conclusion that both the channel Cl and the silicate group cannot be locally present at the same time. Those samples that provide close to the ideal six Si a.p.f.u., Cer0 and Cer2, have 1.54 and 2.04 Cl a.p.f.u., respectively, leading us to propose two Cl a.p.f.u. (and 27 total anions) for the ideal formula. The other samples, Cer1, Esq1, Esq7 and Esq 8, exhibit significant deficiencies in Si and excesses of Cl.

The Gladstone–Dale compatibility indices, $1 - (K_P/K_C)$, for Cerl and Esq1 are 0.010 and 0.007, respectively; both of these are in the superior range (Mandarino, 1981).

X-ray crystallography and structure refinement

Powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer, with mono-

I _{obs}	$d_{\rm obs}$ (Å)	d_{calc} (Å)	Icalc	hkl	I _{obs}	$d_{\rm obs}$ (Å)	d_{calc} (Å)	$I_{\rm calc}$	hkl
39	10.15	10.1237	41	110			(1.9101	7	213
9	7.16	7.1585	9	200			1.9005	4	532
33	5.555	5.5365	39	101	68	1.880	1.8799	20	730
13	5.066	5.0618	18	220			1.8689	28	721
•	=	(4.5274	9	310			1.8679	6	602
39	4.407	(4.3795	33	211			1.8455	3	303
8	3.736	3.7358	7	301			(1.8074	26	622
16	3.584	3.5793	23	400	33	1.8004	1.7896	10	800
		3.3746	6	330			1.7871	8	323
77	3.316	3.3119	80	321	1.5	1 7205	(1.7362	3	820
24	3.201	3.2014	27	420	15	1./395	1.7339	7	413
100	2 000	£ 3.0058	100	411	10	1.6816	1.6786	8	552
100	3.009	3.0018	24	002	20	1 (472	(1.6560	15	642
13	2.870	2.8779	8	112	29	1.64/3	1.6403	18	503
15	2 770	∫ 2.8078	11	510	17	1 5020	∫ 1.5933	7	732
15	2.779	2.7682	10	202	1 /	1.3920) 1.5811	5	910
02	2 590	£ 2.5845	56	501			1.5377	3	901
93	2.380	2.5819	51	222	12	1 4005	∫ 1.5034	4	761
11	2.527	2.5309	25	440	15	1.4995	1.5009	9	004
16	2.463	2.4553	13	530	21	1 4764	∫ 1.4912	7	543
3	2.407	2.4309	2	521	21	1.4/04) 1.4713	4	851
2	2.368	2.3862	6	600			(1.4128	14	941
9	2.306	2.3000	7	402	54	1 4021	1.4027	14	723
20	2 244	£ 2.2637	6	620	54	1.4031	1.3989	11	912
30	2.244	2.2428	36	332			1.3906	5	950
21	2.097	2.0953	33	541			(1.3142	4	871
		(2.0506	9	512	22	1 2012	1.3029	5	772
43	2.029	2.0247	10	550	22	1.5015	1.2922	13	10.0.2
		(2.0110	8	631			1.2910	8	444
		1.9819	5	103			(1.2618	7	952
		1.9349	4	442	37	1.2570	{ 1.2524	9	10.2.1
							(1.2524	4	11.5.1

TABLE 3. Powder X-ray data for cerchiaraite-(Al) (sample Esq1).

Only calculated lines with intensities of 3 or greater are listed, unless they correspond to observed lines. The calculated powder data are based on a whole-pattern-fitting Rietveld structure refinement for Esq1.

chromatic MoKa radiation. In the powderdiffraction studies, the observed d-spacings and intensities were determined by profile fitting using JADE 2010 software. Powder data are presented for samples Cer1 (Table 2) and Esq1 (Table 3), as these have the closest compositions to endmember cerchiaraite-(Fe) and cerchiaraite-(Al), respectively. Unit-cell parameters refined from the powder data using JADE 2010 software with whole pattern fitting are as follows: a =14.3554(12), c = 6.0065(5) Å with V = 1237.80(5) Å³ for Cer1 and a = 14.317(4), c = 6.0037(18) Å with V = 1230.6(6) Å³ for Esq1. The unit-cell parameters refined from the powder data should be considered the most definitive as they were obtained from material closest to the endmember compositions.

Single-crystal structure data were obtained from cerchiaraite-(Fe) from specimen Esq8. The Rigaku *CrystalClear* software package was used to process these data, including the application of an empirical absorption correction. The structure was solved by direct methods using *SIR2004* (Burla *et al.*, 2005) and refined with *SHELXL-97* (Sheldrick, 2008). Most of the fully occupied sites in the structure were located by direct methods; the remaining sites, including those with partial occupancies, were located in difference-Fourier maps. The occupancy of the octahedral site refined to an Fe:Al ratio of 0.596:0.404, indicating that the crystal used was cerchiaraite-(Fe), rather than cerchiaraite-(Al).

The analysis showed the Ba site on the periphery of the channel to be fully occupied; however, all of the other channel sites are partially occupied. In the structure of cerchiaraite [now cerchiaraite-(Mn)], Basso *et al.* (2000) reported the Si2 tetrahedron to be statistically distributed in the channel and to exhibit a high degree of distortion. We found the same to be true of the Si2 tetrahedron in cerchiaraite-(Fe). For the Si2, O4 and O5 sites of the channel silicate group,

Diffractometer	Rigaku R-Axis Rapid II
X-ray radiation: power	$M_0 K \alpha \ (\lambda = 0.71075 \text{ Å}); 50 \text{ kV}, 40 \text{ mA}$
Temperature	298(2) K
Structural Formula	$Ba_4Fe_{2,2}^{3+}Al_{1,62}Si_{6,04}Cl_{2,70}O_{25,17}H_{8,88}$
Space group	I4/mmm
Unit-cell dimensions	a = 14.3554(12) Å
	c = 6.0065(5) Å
Ζ	2
V	1237.80(18) $Å^3$
Density (for above formula)	3.765 g cm^{-3}
Absorption coefficient	8.373 mm^{-1}
F(000)	1295.6
Crystal size	$70 \times 40 \times 40 \ \mu m$
θ range	3.68 to 25.03°
Index ranges	$-17 \le h \le 17, -17 \le k \le 17, -7 \le l \le 7$
Reflections collected/unique	$10,966/343 \ [R_{\rm int} = 0.0646]$
Reflections with $F_{o} > 4\sigma F$	329
Completeness to $\theta = 25.03^{\circ}$	98.0%
Refinement method	Full-matrix least-squares on F^2
Parameters refined	59
GoF	1.134
Final R indices $[F_o > 4\sigma F]$	$R_1 = 0.0253, wR_2 = 0.0557$
R indices (all data)	$R_1 = 0.0269, wR_2 = 0.0566$
Largest diff. peak / hole	$+0.883 / -0.799 \ e \ A^{-3}$

TABLE 4. Data collection and structure refinement details for crystal from Esq8 corresponding to cerchiaraite-(Fe).

$$\begin{split} R_{\text{int}} &= \Sigma |F_o^2 - F_o^2(\text{mean})|/\Sigma [F_o^2].\\ \text{GoF} &= S = \{\Sigma [w(F_o^2 - F_o^2)^2]/(n-p)\}^{\frac{1}{2}}.\\ R_1 &= \Sigma ||F_o| - |F_c||/\Sigma |F_o|.\\ wR_2 &= \{\Sigma [w(F_o^2 - F_o^2)^2]/\Sigma [w(F_o^2)^2]\}^{\frac{1}{2}}.\\ w &= 1/[\sigma^2(F_o^2) + (aP)^2 + bP] \text{ where } a \text{ is } 0.0213, b \text{ is } 17.7504 \text{ and } P \text{ is } [2F_c^2 + \text{Max}(F_o^2,0)]/3. \end{split}$$

TABLE 5. Atom coordinates and displacement parameters (\mathring{A}^2) for cerchiaraite-(Fe)

Basso *et al.* (2000) assigned occupancies of $\frac{1}{4}$, $\frac{1}{4}$ and $\frac{1}{2}$, respectively. Our refined occupancies for these sites are 0.255(11), 0.24(3) and 0.52(7), respectively. In addition, we found a significant residual peak 0.80 Å from the O5 site. This peak is only 1.42 Å from Si2, which is too close for a Si–O bond; however, the peak is at an appropriate distance from the Ba site (3.10 Å) to correspond to a partially occupied Cl site and was assigned as such.

The details of the data collection and structure refinement are provided in Table 4, the final atom coordinates and displacement parameters in Table 5, selected interatomic distances and angles in Table 6 and bond-valence summations in Table 7. Lists of observed and calculated structure factors have been deposited with *Mineralogical Magazine* and can be downloaded from http://www.minnersoc.org/pages/e_journals/dep_mat_mm.html.

Description of the structure

The crystal structure of cerchiaraite-(Fe) (Fig. 5) is essentially identical to that reported by Basso et al. (2000) for cerchiaraite [now cerchiaraite-(Mn)]. In the structure, SiO₄ tetrahedra share corners to form a fourmembered Si₄O₁₂ ring about the fourfold axis [0,0,z]. The ring is corner-linked to an edgesharing chain of Fe³⁺O₆ octahedra that runs parallel to c. The framework thereby created contains a large channel centred about the 42 screw axis $[0,\frac{1}{2},z]$ with Ba atoms positioned around its periphery. Two silicate dimers, Si₂O₃(OH)₄, p.f.u. are statistically distributed within the channel. One fully occupied Cl site is located on the fourfold axis, alternating along **c** with Si_4O_{12} rings. A feature not reported by Basso *et al.* (2000) is an additional partially occupied Cl site (Cl2) in the channel, which accounts for approximately one Cl a.p.f.u. if there are two silicate dimers p.f.u., but which can accommodate more Cl if there are less than two silicate dimers. Note that the very low bond-valence sum of 0.33 vu for Cl2 is likely to be augmented by two hydrogen bonds from the O2 OH groups.

Crystals from the Esquire No. 8 claim (and also from the Esquire No. 1 and No. 7 claims) exhibit a strongly pleochroic blue colour parallel to \mathbf{c} , which corresponds to the direction of the edge-sharing octahedral chains. The

	nir	aik	z/c	U_{eq}	U_{11}	U22	V33	U23	V13	~ 1 <i>2</i>
Ba 0.2	1637(5)	0	0	0.0275(2)	0.0349(4)	0.0222(4)	0.0254(4)	0	0	0.000
$M = \frac{1}{4}$	~	1/4	1/4	0.0190(6)	0.0207(7)	0.0207(7)	0.0156(9)	0.0001(5)	0.0001(5)	-0.0075(7)
Sil 0.3	8855(13)	0.38855(13)	0	0.0165(6)	0.0164(8)	0.0164(8)	0.0167(13)	0	0	-0.0010(10)
Si2 0.4	183(6)	0.1121(5)	0	0.027(3)	0.041(6)	0.019(5)	0.023(5)	0	0	0.006(4)
C11 0		0	0	0.0279(12)	0.0240(16)	0.0240(16)	0.036(3)	0	0	0
CI2 ¹ / ₂		0.1388(15)	0.118(9)	0.082(13)	0.037(10)	0.073(10)	0.14(3)	-0.042(12)	0	0
01 0.3	460(2)	0.3460(2)	0.2268(7)	0.0218(10)	0.0254(15)	0.0254(15)	0.015(2)	0.0018(14)	0.0018(14)	-0.005(2)
02 0.1	766(4)	0.3076(4)	0	0.0293(12)	0.026(3)	0.039(3)	0.024(3)	0	0	-0.009(2)
03 0.3	586(5)	1/2	0	0.0256(16)	0.037(4)	0.011(3)	0.028(4)	0	0	0
04 0.3	94(2)	0	0	0.036(13)	0.04(2)	0.016(18)	0.05(3)	0	0	0
05 1/2		0.126(3)	0.247(9)	0.139(18)	0.22(4)	0.10(2)	0.09(3)	-0.074(19)	0	0

Ba-O4	2.55(3)	Si1 $-$ O1 (×2)	1.612(5)	Si2-O4	1.646(11)
Ba $-O5 (\times 2)$	2.73(2)	$Si1-O3 (\times 2)$	1.626(2)	Si2-O2	1.839(10)
$Ba-O2(\times 2)$	2.854(5)	<si1-0></si1-0>	1.619	$Si2-O5 (\times 2)$	1.90(4)
$Ba-O1(\times 4)$	2.895(3)			<si2–o></si2–o>	1.821
$Ba-Cl2(\times 2)$	3.10(4)	O1-Si1-O1	115.3(4)		
Ba-Cl1	3.1061(7)	O1-Si1-O3 (×4)	107.80(15)	O2-Si2-O4	108.0(13)
< Ba −φ>*	2.897	O3-Si1-O3	110.3(6)	O2-Si2-O5 (×2)	118.8(6)
·				$04 - Si2 - O5(\times 2)$	103.3(15)
$M-O1 (\times 2)$	1.955(5)			05-Si2-05	103(2)
$M - O2(\times 4)$	2.012(4)				
< <i>M</i> - O >	1.993				

TABLE 6. Selected bond distances (Å) and angles (°) in cerchiaraite-(Fe).

* Occupancies for partially occupied O and Cl atoms (O4, O5 and Cl2) have been used for calculating $\langle Ba-\phi \rangle$.

colour is clearly attributable to $Fe^{2+}-Fe^{3+}$ intervalence charge transfer (IVCT). The <M-O> of 1.993 Å is consistent with the site being predominantly occupied by Al and Fe³⁺. Furthermore, using a bond-valence parameter in accord with the refined site occupancy of Fe^{3+} :Al = 0.595:0.405, the bond-valence sum (BVS) for the site is 2.84 vu, confirming the dominance of trivalent cations. The somewhat low BVS (for a trivalent cation) is consistent with a small

FIG. 5. Structure of cerchiaraite (Esq8) viewed slightly canted down [001].

Ś
unit
lence
Va
in'
expressed
are
alues
\geq
(Fe).
cerchiaraite-(
for e
/sis
analy
ond-valence
В
Ч.
(Y)

TABL

	01	02	03	04	05	CII	C12	Sum
Ba M Si1	$0.19 \times 2 \downarrow \times 4 \rightarrow 0.52 \times 2 \rightarrow 1.03 \times 2 \rightarrow 0$	$\begin{array}{c} 0.21 \times 2 \rightarrow \\ 0.45 \times 2 \downarrow \times 4 \rightarrow \end{array}$	1 c > 00 U	$0.49 \times 0.24 \rightarrow$	$0.26 \times 1.04 \rightarrow$	$0.32 \times 4 \downarrow$	$0.33 \times 0.21 \rightarrow$	2.05 2.84 4.05
Si2		0.14		0.94×21	$0.47 \times 2\downarrow$			4.00 2.45
Sum	1.93	1.25	1.98	2.37	0.94	1.28	0.33	
Multiplicit O'Keefe (1	y is indicated by $\times \rightarrow$ 991). The bond streng	↓; Ba^{2+} −O and Fe^{3+} gths for the <i>M</i> site ar	-O bond strength e based upon the	s from Brown and <i>F</i> refined Fe/Al occupa	Altermatt (1985); Al ³ uncy. Multiplicities f	³⁺ -O and Si ⁴⁺ -C or O4, O5 and Cl) bond strengths from 2 are also based upon	l Brese and occupancies.

proportion of the Fe being Fe^{2+} . For calculation of the empirical formulae for the Esq1, Esq7 and Esq8 samples (Table 1), these considerations led us to an approximate Fe allocation of 90% Fe^{3+} and 10% Fe^{2+} .

Some comments on the highly unusual acid disilicate group, Si₂O₃(OH)₄, are warranted. This group was reported in the structure of cerchiaraite by Basso et al. (2000) and we noted the same group with a more distorted geometry in our refinement of the cerchiaraite-(Fe) structure. The OH groups were regarded by Basso et al. (2000) as being necessary from a bond-valence perspective. They dismissed the possibility of two insular silicate groups, SiO(OH)₃, on opposite sides of the channel rather than the disilicate group because that required too high a water content, and too high an occupancy for the O4 site. The statistical occupancy and disorder within the channel leaves some doubt about the nature of the silicate group. The distorted geometry of the Si2 tetrahedron and particularly its very long Si-O bond lengths (which provide a very low bond-valence sum for Si2) are probably an artefact of the positional disorder.

It is worth noting that the disorder within the channel suggests that other constituents, such as H_2O , SO_4 or CO_3 , could be accommodated, as in the closely related structures of bobmeyerite, $Pb_4(Al_3Cu)(Si_4O_{12})(S_{0.5}Si_{0.5}O_4)(OH)_7Cl(H_2O)_3$ (Kampf *et al.*, 2013) and ashburtonite, $Pb_4Cu_4(Si_4O_{12})(OH)_4Cl(HCO_3)_4$ (Grice *et al.*, 1991).

Acknowledgements

Reviewers Joel Grice and Stuart Mills are thanked for their constructive comments. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

References

- Alfors, J.T., Stinson, M.C., Matthews, R.A. and Pabst, A. (1965) Seven new barium minerals from eastern Fresno County, California. *American Mineralogist*, 50, 314–340.
- Alfors, J.T. and Pabst, A. (1984) Titanian taramellites in western North America. *American Mineralogist*, 69, 358–373.
- Armstrong, J.T. (1988) Quantitative analysis of silicates and oxide minerals: comparison of Monte-Carlo,

ZAF and Phi-Rho-Z procedures. Pp. 239–246 in: *Microbeam Analysis* (D.E. Newbury, editor). San Francisco Press, San Francisco, USA.

- Basciano, L.C., Groat, L.A., Roberts, A.C., Gault, R.A., Dunning, G.E. and Walstrom, R.E. (2001*a*) Bigcreekite, a new mineral from eastern Fresno County, California. *The Canadian Mineralogist*, **39**, 761–768.
- Basciano, L.C., Groat, L.A., Roberts, A.C., Grice, J.D., Dunning, G.E., Foord, E.E., Kjarsgaard, I. and Walstrom, R.E. (2001b) Kampfite, a new barium silicate mineral from Fresno County, California. *The Canadian Mineralogist*, **39**, 1053–1058.
- Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-Mn-mixedanion silicate chloride from the Cerchiara mine, northern Apennines, Italy. *Neues Jahrbuch für Mineralogie, Monatschefte*, 2000, 373–384.
- Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. *Acta Crystallographica*, **B47**, 192–197.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. *Acta Crystallographica*, **B41**, 244–247.
- Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) *SIR2004*: an improved tool for crystal structure determination and refinement. *Journal of Applied Crystallography*, 38, 381–388.
- Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S. and Vezzalini, G. (1993) First occurrence of a Badominant brewsterite: structural features. *European Journal of Mineralogy*, 5, 353–360.
- Dunning, G.E. and Cooper, J.F. Jr (1999) Barium silicate minerals from Trumbull Peak, Mariposa County, California. *Mineralogical Record*, 30, 411–417.
- Grice, J.D., Nickel, E.H. and Gault, R.A. (1991) Ashburtonite, a new bicarbonate-silicate mineral from Ashburton Downs, Western Australia: description and structure determination. *American Mineralogist*, **76**, 1701–1707.
- Kampf, A.R., Rossman, G.R., Steele, I.M., Pluth, J.J., Dunning, G.E. and Walstrom, R.E. (2010) Devitoite, a new heterophyllosilicate with astrophyllite-like layers from eastern Fresno County, California. *The Canadian Mineralogist*, **48**, 29–40.
- Kampf, A.R., Roberts, A.C., Venance, K.E., Dunning, G.E. and Walstrom, R.E. (2011) Ferroericssonite, the Fe²⁺-analogue of ericssonite from eastern Fresno

County, California, U.S.A. The Canadian Mineralogist, 49, 587-594.

- Kampf, A.R., Pluth, J.J., Chen, Y.-S., Roberts, A.C. and Housley, R.M. (2013) Bobmeyerite, a new mineral from Tiger, Arizona, USA, structurally related to cerchiaraite and ashburtonite. *Mineralogical Magazine*, 77, 81–91.
- Lucchetti, G., Cortesogno, L. and Palenzona, A. (1988) Low-temperature metamorphic mineral assemblages in Mn-Fe ores from Cerchiara mine (northern Apennine, Italy). *Neues Jahrbuch für Mineralogie Monatshefte*, **1988**, 367–383.
- Mandarino, J.A. (1981) The Gladstone–Dale relationship: part IV. The compatibility concept and its application. *The Canadian Mineralogist*, **19**, 441–450.
- Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. *European Journal of Mineralogy*, 21, 1073–1080.
- Montgomery, J.H., Thompson, R.M. and Meagher, E.P. (1972) Pellyite: a new barium silicate mineral from the Yukon Territory. *The Canadian Mineralogist*, 11, 444–447.
- Newberry, N.G., Essene, E.J. and Peacor, D.R. (1981) Alforsite, a new member of the apatite group: the barium analogue of chlorapatite. *American Mineralogist*, **66**, 1050–1053.
- Roberts, A.C., Grice, J.D., Dunning, G.E. and Venance, K.E. (2001) Fencooperite, Ba₆Fe₃³⁺Si₈O₂₃ (CO₃)₂Cl₃·H₂O, a new mineral species from Trumbull Peak, Mariposa County, California. *The Canadian Mineralogist*, **39**, 1059–1064.
- Rogers, A.F. (1932) Sanbornite, a new barium silicate mineral from Mariposa County, California. *American Mineralogist*, **17**, 161–172.
- Sheldrick, G.M. (2008) SHELXL97 Program for the Refinement of Crystal Structures. University of Göttigen, Göttigen, Germany.
- Stormer, J.C., Pierson, M.L. and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. *American Mineralogist*, 78, 641–648.
- Walstrom, R.E. and Dunning, G.E. (2003) The Baumann prospect, Chickencoop Canyon, Tulare County, California. *Mineralogical Record*, 34, 159–166.
- Walstrom, R.E. and Leising, J.F. (2005) Barium minerals of the sanbornite deposits, Fresno County, California. Axis, 1, 1–18.